Abstract

In this paper, the geometry of a supersonic inlet isolator is modified by the introduction of a two-dimensional (2D) bump to control the complex lip shock wave/boundary layer interaction (SWBLI). The bump is of general shape whose profile is designed primarily based on the inviscid theory of oblique shock waves, which accommodates the effect of freestream conditions; particularly, the flow Mach number. Further, the geometric constraints of the inlet are taken into consideration to generate a contoured bump. This well-designed generic bump is tested in the range of flight Mach number of 2.5 to 3.8 through numerical computations. The adopted computational methods are validated with the available experimental data. Results showed that the modified inlet using the present generic bump changes the internal shock structure, weakens the intensity of SWBLI, and subsequently reduces shock reflection phenomena which are prevalent in baseline inlet. The wall characteristics such as separation bubble (SB), skin friction, and total pressure loss are found to be reduced in inlet with bump. The SB in baseline inlet typically corresponds with the geometric profile of the bump. As a result, ramp of baseline inlet is apparently replaced by this generic bump, which eliminates the low momentum fluid adjacent to the wall and the passage of modified inlet is found to be mostly occupied by high momentum supersonic flow. The flow control and associated performance improvement are linked with this modification of supersonic inlet isolator.

References

1.
Mahoney
,
J. J.
,
1990
,
Inlets for Supersonic Missiles
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
2.
Tan
,
H. J.
,
Sun
,
S.
, and
Huang
,
H. X.
,
2012
, “
Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model With Complex Background Waves
,”
Exp. Fluids
,
53
(
6
), pp.
1647
1661
.10.1007/s00348-012-1386-1
3.
Heiser
,
W.
,
Pratt
,
D.
,
Daley
,
D.
, and
Mehta
,
U.
,
1994
,
Hypersonic Airbreathing Propulsion
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
4.
Délery
,
J.
, and
Dussauge
,
J.-P.
,
2009
, “
Some Physical Aspects of Shock Wave/Boundary Layer Interactions
,”
Shock Waves
,
19
(
6
), pp.
453
468
.10.1007/s00193-009-0220-z
5.
Herrmann
,
C.
, and
Koschel
,
W.
,
2002
, “
Experimental Investigation of the Internal Compression Inside a Hypersonic Intake
,”
AIAA
Paper No. 2002-4130. 10.2514/6.2002-4130
6.
Schulte
,
D.
,
Henckels
,
A.
, and
Neubacher
,
R.
,
2001
, “
Manipulation of Shock/Boundary-Layer Interactions in Hypersonic Inlets
,”
J. Propul. Power
,
17
(
3
), pp.
585
590
.10.2514/2.5781
7.
Schulte
,
D.
,
Henckels
,
A.
, and
Wepler
,
U.
,
1998
, “
Reduction of Shock Induced Boundary Layer Separation in Hypersonic Inlets Using Bleed
,”
Aerosp. Sci. Technol.
,
2
(
4
), pp.
231
239
.10.1016/S1270-9638(98)80001-1
8.
Fan
,
Y.
,
Chang
,
J.
,
Bao
,
W.
, and
Yu
,
D.
,
2010
, “
Effects of Boundary-Layer Bleeding on Unstart Oscillatory Flow of Hypersonic Inlets
,”
Aeronaut. J.
,
114
(
1157
), pp.
445
450
.10.1017/S0001924000003924
9.
Chen
,
H.
,
Tan
,
H.-J.
,
Liu
,
Y.-Z.
, and
Zhang
,
L. Q.-F.
,
2019
, “
External-Compression Supersonic Inlet Free From Violent Buzz
,”
AIAA J.
,
57
(
6
), pp.
2513
2533
.10.2514/1.J057811
10.
Yongzhao
,
L.
,
Qiushi
,
L.
, and
Shaobin
,
L.
,
2015
, “
Modeling the Effect of Stability Bleed on Back-Pressure in Mixed-Compression Supersonic Inlets
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121101
.10.1115/1.4030811
11.
Verma
,
S. B.
,
Manisankar
,
C.
, and
Akshara
,
P.
,
2015
, “
Control of Shock-Wave Boundary Layer Interaction Using Steady Micro-Jets
,”
Shock Waves
,
25
(
5
), pp.
535
543
.10.1007/s00193-014-0508-5
12.
Greene
,
B. R.
,
Clemens
,
N. T.
,
Magari
,
P.
, and
Micka
,
D.
,
2015
, “
Control of Mean Separation in Shock Boundary Layer Interaction Using Pulsed Plasma Jets
,”
Shock Waves
,
25
(
5
), pp.
495
505
.10.1007/s00193-014-0524-5
13.
Ruban
,
A.
,
Menezes
,
V.
,
Balasubramanian
,
S.
, and
Srinivasan
,
K.
,
2020
, “
Shock-Boundary Layer-Interaction Control Through Recirculation in a Hypersonic Inlet
,”
ASME J. Fluid Eng.
,
142
(
11
), p.
114502
.10.1115/1.4048141
14.
Babinsky
,
H.
,
Li
,
Y.
, and
Ford
,
C. W. P.
,
2009
, “
Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions
,”
AIAA J.
,
47
(
3
), pp.
668
675
.10.2514/1.38022
15.
Zhang
,
Y.
,
Tan
,
H.-J.
,
Du
,
M.-C.
, and
Wang
,
D.-P.
,
2015
, “
Control of Shock/Boundary-Layer Interaction for Hypersonic Inlets by Highly Swept Microramps
,”
J. Propul. Power
,
31
(
1
), pp.
133
143
.10.2514/1.B35299
16.
Yan
,
Y.
,
Chen
,
L.
,
Li
,
Q.
, and
Liu
,
C.
,
2017
, “
Numerical Study of Micro-Ramp Vortex Generator for Supersonic Ramp Flow Control at Mach 2.5
,”
Shock Waves
,
27
(
1
), pp.
79
96
.10.1007/s00193-016-0633-4
17.
Babinsky
,
H.
, and
Ogawa
,
H.
,
2008
, “
SBLI Control for Wings and Inlets
,”
Shock Waves
,
18
(
2
), pp.
89
96
.10.1007/s00193-008-0149-7
18.
Ogawa
,
H.
,
Babinsky
,
H.
,
Pätzold
,
M.
, and
Lutz
,
T.
,
2008
, “
Shock-Wave/Boundary-Layer Interaction Control Using Three-Dimensional Bumps for Transonic Wings
,”
AIAA J.
,
46
(
6
), pp.
1442
1452
.10.2514/1.32049
19.
Zhang
,
Y.
,
Tan
,
H.
,
Tian
,
F.-C.
, and
Zhuang
,
Y.
,
2014
, “
Control of Incident Shock/Boundary-Layer Interaction by a Two-Dimensional Bump
,”
AIAA J.
,
52
(
4
), pp.
767
776
.10.2514/1.J052786
20.
Zhang
,
Y.
,
Tan
,
H.
,
Sun
,
S.
, and
Rao
,
C.
,
2015
, “
Control of Lip Shock/Boundary-Layer Interaction in Hypersonic Inlets by Bump
,”
AIAA J.
,
53
(
11
), pp.
3492
3496
.10.2514/1.J053974
21.
Zhang
,
Y.
,
Tan
,
H.-J.
,
Li
,
J.-F.
, and
Yin
,
N.
,
2019
, “
Control of Lip-Shock/Boundary-Layer Interactions by Deformable Shape-Memory Alloy Bump
,”
AIAA J.
,
57
(
2
), pp.
696
705
.10.2514/1.J057409
22.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow: With Historical Perspective
,
McGraw-Hill Companies
,
New York
.
23.
Mascitti
,
V. R.
,
1969
, “
A Closed-Form Solution to Oblique Shock-Wave Properties
,”
J. Aircr.
,
6
(
1
), pp.
66
66
.10.2514/3.59421
24.
Wolf
,
T.
,
1993
, “
Comment on ‘Approximate Formula of Weak Oblique Shock Wave Angle’
,'”
AIAA J.
,
31
(
7
), pp.
1363
1363
.10.2514/3.49078
25.
Dou
,
H.-S.
, and
Teng
,
H.-Y.
,
1992
, “
Approximate Formula of Weak Oblique Shock Wave Angle
,”
AIAA J.
,
30
(
3
), pp.
837
839
.10.2514/3.10993
26.
Zhang
,
Q.
,
Chen
,
X.
,
He
,
L.-M.
,
Rong
,
K.
, and
Deiterding
,
R.
,
2017
, “
Investigation of Shock Focusing in a Cavity With Incident Shock Diffracted by an Obstacle
,”
Shock Waves
,
27
(
2
), pp.
169
177
.10.1007/s00193-016-0653-0
27.
Guan
,
X.-K.
,
Bai
,
C.-Y.
, and
Wu
,
Z.-N.
,
2018
, “
Steady Mach Reflection With Two Incident Shock Waves
,”
J. Fluid Mech.
,
855
, pp.
882
909
.10.1017/jfm.2018.676
28.
Threadgill
,
J., A. S.
, and
Little
,
J. C.
,
2020
, “
An Inviscid Analysis of Swept Oblique Shock Reflections
,”
J. Fluid Mech.
,
890
, p.
A22
.10.1017/jfm.2020.117
29.
Reinartz
,
B. U.
,
Herrmann
,
C. D.
,
Ballmann
,
J.
, and
Koschel
,
W. W.
,
2003
, “
Aerodynamic Performance Analysis of a Hypersonic Inlet Isolator Using Computation and Experiment
,”
J. Propul. Power
,
19
(
5
), pp.
868
875
.10.2514/2.6177
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
31.
Wilcox
,
C.
,
1988
, “
Multiscale Model for Turbulent Flows
,”
AIAA J.
,
26
(
11
), pp.
1311
1320
.10.2514/3.10042
32.
Joy
,
S. H.
,
Rahman
,
S.
, and
Hasan
,
A. B. M. T.
,
2018
, “
Effects of Surface Waviness on the Interaction of Oblique Shock Wave With Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041205
.10.1115/1.4038214
33.
Hasan
,
A. B. M. T.
,
2014
, “
Characteristics of Overexpanded Nozzle Flows in Imposed Oscillating Condition
,”
Int. J. Heat Fluid Flow
,
46
, pp.
70
83
.10.1016/j.ijheatfluidflow.2014.01.001
34.
Balabel
,
A.
,
Hegab
,
A. M.
,
Nasr
,
M.
, and
El-Behery
,
S. M.
,.:
2011
, “
Assessment of Turbulence Modeling for Gas Flow in Two-Dimensional Convergent-Divergent Rocket Nozzle
,”
Appl. Math. Modell.
,
35
(
7
), pp.
3408
3422
.10.1016/j.apm.2011.01.013
35.
Weiss
,
J. M.
,
Maruszewski
,
J. P.
, and
Smith
,
W. A.
,
1997
, “
Implicit Solution of the Navier-Stokes Equations on Unstructured Meshes
,”
AIAA
Paper No. 97-2103.10.2514/6.1997-2103
36.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
37.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
You do not currently have access to this content.