Abstract

Ultrahigh intensity lasers face thermal management issues that limit their repetition rates. The key challenge is to efficiently evacuate the heat deposited in the amplifier by the optical pumping without impacting the output laser beam quality. The amplifier can have a multislab geometry where the laser beam crosses successive amplifying slabs and the cooling channels that separate them. This work investigates numerically how a cryogenic cooling of the amplifier by turbulent channel flows may affect the wavefront of the laser beam. To this end, large eddy simulations (LESs) representative of the amplifier cooling are performed using TrioCFD, a code developed by the CEA. First, validation simulations are carried out for heated channel flows, allowing comparisons to direct numerical simulation (DNS) results from the literature. Then, LESs of an open turbulent channel flow cooling two slabs are conducted using conjugated heat transfer between the solid and the fluid. The phase distortions, mean and fluctuations, induced by the inhomogeneous and turbulent temperature field are computed directly from the LES. A moderate although non-negligible effect of the turbulence on the laser wavefront was found. This optical effect increases when the slab heating increases. A comparison to the Sutton model, widely used in aero-optic studies, was performed, and its applicability was found limited for this problem. For the first time, TrioCFD is used to address the question of the beam impact of the cooling of laser amplifiers, and it has proven to be a valuable tool for such application.

References

1.
Wills
,
S.
,
2020
, “
ELI: Open for Business
,”
Opt. Photonics News
,
31
(
1
), p.
30
.10.1364/OPN.31.1.000030
2.
Papadopoulos
,
D. N.
,
Zou
,
J. P.
,
Le Blanc
,
C.
,
Ranc
,
L.
,
Druon
,
F.
,
Martin
,
L.
,
Fréneaux
,
A.
,
Beluze
,
A.
,
Lebas
,
N.
,
Chabanis
,
M.
,
Bonnin
,
C.
,
Accary
,
J. B.
,
Garrec
,
B. L.
,
Mathieu
,
F.
, and
Audebert
,
P.
,
2019
, “
First Commissioning Results of the Apollon Laser on the 1 PW Beam Line
,”
Conference on Lasers and Electro-Optics
, San Jose, CA, May 5–10, p.
STu3E.4
.10.1364/CLEO_SI.2019.STu3E.4
3.
Le Garrec
,
B.
,
2010
, “
Laser-Diode and Flash Lamp Pumped Solid-State Lasers
,”
AIP Conf. Proc.
,
1228
, pp.
111
116
.10.1063/1.3426039
4.
Navratil
,
P.
,
Slezak
,
O.
,
Pilar
,
J.
,
Ertel
,
K. G.
,
Hanus
,
M.
,
Banerjee
,
S.
,
Phillips
,
P. J.
,
Smith
,
J.
,
De Vido
,
M.
,
Lucianetti
,
A.
,
Hernandez-Gomez
,
C.
,
Edwards
,
C. B.
,
Collier
,
J. L.
,
Mocek
,
T.
,
Mason
,
P. D.
,
Divoký
,
M.
, and
Butcher
,
T. J.
,
2018
, “
Characterization of Bivoj/DiPOLE 100: HiLASE 100-J/10-Hz Diode Pumped Solid State Laser
,”
SPIE Proc.
, p. 105110X.10.1117/12.2290290
5.
Brown
,
D.
,
Tornegård
,
S.
,
Kolis
,
J.
,
McMillen
,
C.
,
Moore
,
C.
,
Sanjeewa
,
L.
, and
Hancock
,
C.
,
2016
, “
The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers
,”
Appl. Sci.
,
6
(
1
), p.
23
.10.3390/app6010023
6.
Brown
,
D. C.
,
2005
, “
The Promise of Cryogenic Solid-State Lasers
,”
IEEE J. Sel. Top. Quantum Electron.
,
11
(
3
), pp.
587
599
.10.1109/JSTQE.2003.850237
7.
Mason
,
P. D.
,
Fitton
,
M.
,
Lintern
,
A.
,
Banerjee
,
S.
,
Ertel
,
K.
,
Davenne
,
T.
,
Hill
,
J.
,
Blake
,
S. P.
,
Phillips
,
P. J.
,
Butcher
,
T. J.
,
Smith
,
J. M.
,
De Vido
,
M.
,
Greenhalgh
,
R. J. S.
,
Hernandez-Gomez
,
C.
, and
Collier
,
J. L.
,
2015
, “
Scalable Design for a High Energy Cryogenic Gas Cooled Diode Pumped Laser Amplifier
,”
Appl. Opt.
,
54
(
13
), p.
4227
.10.1364/AO.54.004227
8.
Gladstone
,
J.
, and
Dale
,
T.
,
1863
, “
XIV. Researches on the Refraction, Dispersion, and Sensitiveness of Liquids
,”
Philos. Trans. R. Soc. London
,
153
, pp.
317
343
.10.1098/rstl.1863.0014
9.
Arp
,
V. D.
,
McCarty
,
R. D.
, and
Friend
,
D. G.
,
1998
, “
Thermophysical Properties of Helium-4 From 0.8 to 1500 K With Pressures to 2000 MPa
,” NIST, Boulder, CO, Report No.
1334
.https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1334.pdf
10.
Cardinali
,
V.
,
2011
, “
Matériaux Lasers Dopés à L'ion Ytterbium: Performances Lasers en Pompage Par Diodes Lasers et Étude Des Propriétés Thermo-Optiques à Des Températures Cryogéniques
,” Ph.D. thesis, Ecole Polytechnique X, Palaiseau, France.
11.
Roggemann
,
M. C.
, and
Welsh
,
B.
,
1996
,
Imaging Through Turbulence
(The CRC Press Laser and Optical Science and Technology Series),
CRC Press
,
Boca Raton, FL
.
12.
Gordeyev
,
S.
,
Cress
,
J.
, and
Jumper
,
E.
,
2013
, “
Far-Field Laser Intensity Drop-Outs Caused by Turbulent Boundary Layers
,”
J. Dir. Energy
,
5
(
1
), pp.
58
75
.https://www3.nd.edu/~sgordeye/Papers/JofDE2013a.pdf
13.
Sutton
,
G.
,
1984
, “
Aero-Optical Foundations and Applications
,”
17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference
, Snowmass, CO, June 25–27, p. 1817.
14.
Tromeur
,
E.
,
Garnier
,
E.
, and
Sagaut
,
P.
,
2006
, “
Analysis of the Sutton Model for Aero-Optical Properties of Compressible Boundary Layers
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
239
246
.10.1115/1.2170128
15.
Tromeur
,
E.
,
Garnier
,
E.
, and
Sagaut
,
P.
,
2006
, “
Large-Eddy Simulation of Aero-Optical Effects in a Spatially Developing Turbulent Boundary Layer
,”
J. Turbul.
,
7
, p.
N1
.10.1080/14685240500307389
16.
Wang
,
K.
, and
Wang
,
M.
,
2012
, “
Aero-Optics of Subsonic Turbulent Boundary Layers
,”
J. Fluid Mech.
,
696
, pp.
122
151
.10.1017/jfm.2012.11
17.
Truman
,
C. R.
, and
Lee
,
M. J.
,
1990
, “
Effects of Organized Turbulence Structures on the Phase Distortion in a Coherent Optical Beam Propagating Through a Turbulent Shear Flow
,”
Phys. Fluids A
,
2
(
5
), pp.
851
857
.10.1063/1.857633
18.
Gordeyev
,
S.
,
Cress
,
J. A.
,
Smith
,
A.
, and
Jumper
,
E. J.
,
2015
, “
Aero-Optical Measurements in a Subsonic, Turbulent Boundary Layer With Non-Adiabatic Walls
,”
Phys. Fluids
,
27
(
4
), p.
045110
.10.1063/1.4919331
19.
Truman
,
C.
,
1992
, “
The Influence of Turbulent Structure on Optical Phase Distortion Through Turbulent Shear Flows
,”
Annual Interceptor Technology Conference
, Huntsville, AL, May 19–21, p.
2817
.10.2514/6.1992-2817
20.
Angeli
,
P.-E.
,
Bieder
,
U.
, and
Fauchet
,
G.
,
2015
, “
Overview of the TrioCFD Code: Main Features, V&V Procedures and Typical Applications to Nuclear Engineering
,” 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (
NURETH-16
), Chicago, IL, Aug. 30–Sept. 4, pp.
252
265
.https://www.researchgate.net/publication/282150429_OVERVIEW_OF_THE_TRIOCFD_CODE_MAIN_FEATURES_VV_PROCEDURES_AND_TYPICAL_APPLICATIONS_TO_NUCLEAR_ENGINEERING
21.
Perin
,
J. P.
,
Millet
,
F.
,
Rus
,
B.
, and
Divoký
,
M.
,
2011
, “
Cryogenic Cooling for High Power Laser Amplifiers
,”
Fifth International Conference on the Frontiers of Plasma Physics and Technology
, Singapore, Apr. 18–22, p.
1713
.https://www-pub.iaea.org/MTCD/publications/PDF/TE-1713-CD/talks/Perin-paper.pdf
22.
Sagaut
,
P.
,
2002
,
Large Eddy Simulation for Incompressible Flows
,
Scientific Computation
,
Springer, Berlin
.
23.
Divoky
,
M.
,
Sawicka
,
M.
,
Sikocinski
,
P.
,
Lucianetti
,
A.
,
Novak
,
J.
,
Rus
,
B.
, and
Mocek
,
T.
,
2013
, “
Conceptual Design of 100 J Cryogenically-Cooled Multi-Slab Laser for Fusion Research
,”
EPJ Web Conf.
,
59
, p.
08004
.10.1051/epjconf/20135908004
24.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
25.
Calvin
,
C.
,
Cueto
,
O.
, and
Emonot
,
P.
,
2002
, “
An Object-Oriented Approach to the Design of Fluid Mechanics Software
,”
ESAIM: Math. Modell. Numer. Anal.
,
36
(
5
), pp.
907
921
.10.1051/m2an:2002038
26.
TrioCFD
,
2019
, “
List of Publications Using TrioCFD Software
,” Accessed June 26, 2019, https://triocfd.cea.fr/Pages/Publications/Articles.aspx
27.
Serra
,
S.
,
Toutant
,
A.
, and
Bataille
,
F.
,
2012
, “
Thermal Large Eddy Simulation in a Very Simplified Geometry of a Solar Receiver
,”
Heat Transfer Eng.
,
33
(
6
), pp.
505
524
.10.1080/01457632.2012.624856
28.
Serra
,
S.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
,
2012
, “
High-Temperature Gradient Effect on a Turbulent Channel Flow Using Thermal Large-Eddy Simulation in Physical and Spectral Spaces
,”
J. Turbul.
,
13
, pp.
N49
N41
.10.1080/14685248.2012.728000
29.
Mani
,
A.
,
Wang
,
M.
, and
Moin
,
P.
,
2008
, “
Resolution Requirements for Aero-Optical Simulations
,”
J. Comput. Phys.
,
227
(
21
), pp.
9008
9020
.10.1016/j.jcp.2008.02.014
30.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
31.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Re T = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
32.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
33.
Sanchez
,
M.
,
Aulery
,
F.
,
Toutant
,
A.
, and
Bataille
,
F.
,
2014
, “
Large Eddy Simulations of Thermal Boundary Layer Spatial Development in a Turbulent Channel Flow
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060906
.10.1115/1.4024809
34.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
196
207
.10.1016/S0142-727X(99)00014-4
35.
Havener
,
G.
,
1992
, “
Optical Wave Front Variance—A Study on Analytic Models in Use Today
,”
30th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9, p.
0654
.10.2514/6.1992-654
36.
Aggarwal
,
R. L.
,
Ripin
,
D. J.
,
Ochoa
,
J. R.
, and
Fan
,
T. Y.
,
2005
, “
Measurement of Thermo-Optic Properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 Laser Crystals in the 80–300 K Temperature Range
,”
J. Appl. Phys.
,
98
(
10
), p.
103514
.10.1063/1.2128696
You do not currently have access to this content.