Abstract
The cavitating flow on a NACA0015 hydrofoil in water under a wide range of temperatures is simulated with or without noncondensation gas using a homogeneous model. Our simplified thermodynamic model is coupled with governing equations to capture the latent heat transfer in cavitation. A numerical evaluation proves its applicability through a comparison with experimental data. As a result, the numerical evaluation illustrates good agreement with measured data for both simulations with or without noncondensation gas. The expected prediction pressure coefficient is in better agreement with experimental data for high-temperature water compared to the existing numerical data. Although the temperature depression inside the cavity is confirmed numerically, the thermodynamic effect shows a weak impact on the cavitation behavior near the boiling temperature (100 °C). The cavitating flow can therefore be simulated reasonably by an isothermal approach at a reasonable cost. The suppression of the void fraction as the water temperature increases is deduced by the flow behavior rather than the thermodynamic effect. Finally, the impact of a noncondensation gas is closely linked to the thermodynamic properties of the water and the flow behavior. The attached cavity position shifts closer to the hydrofoil leading edge significantly in high-temperature water, while an identical position is reproduced for room temperature conditions in comparison with the simulation without a noncondensation gas.