Abstract

The cavitating flow on a NACA0015 hydrofoil in water under a wide range of temperatures is simulated with or without noncondensation gas using a homogeneous model. Our simplified thermodynamic model is coupled with governing equations to capture the latent heat transfer in cavitation. A numerical evaluation proves its applicability through a comparison with experimental data. As a result, the numerical evaluation illustrates good agreement with measured data for both simulations with or without noncondensation gas. The expected prediction pressure coefficient is in better agreement with experimental data for high-temperature water compared to the existing numerical data. Although the temperature depression inside the cavity is confirmed numerically, the thermodynamic effect shows a weak impact on the cavitation behavior near the boiling temperature (100 °C). The cavitating flow can therefore be simulated reasonably by an isothermal approach at a reasonable cost. The suppression of the void fraction as the water temperature increases is deduced by the flow behavior rather than the thermodynamic effect. Finally, the impact of a noncondensation gas is closely linked to the thermodynamic properties of the water and the flow behavior. The attached cavity position shifts closer to the hydrofoil leading edge significantly in high-temperature water, while an identical position is reproduced for room temperature conditions in comparison with the simulation without a noncondensation gas.

References

1.
Ball
,
C. L.
,
Meng
,
P. R.
, and
Reed
,
L.
,
1967
, “
Cavitation Performance of 84 Degree Helical Pump Inducer Operated in 37 Degree and 42 Degree in Liquid Hydrogen
,” NASA Technical Memorandum, Report No.
NASATM-X-1360
.https://www.semanticscholar.org/paper/Cavitation-Performance-of-84-Deg-Helical-Pump-in-37-Ball-Meng/0cc28782562c4167297c83ca52f0c134937d431c
2.
Franc
,
J.-P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.10.1115/1.1792278
3.
Yamaguchi
,
Y.
, and
Iga
,
Y.
,
2014
, “
Thermodynamics Effects on Cavitation in High Temperature Water
,”
ASME
Paper No. FEDSM2014-21433.10.1115/FEDSM2014-21433
4.
Yoshida
,
Y.
,
Nanri
,
H.
,
Kikuta
,
K.
,
Kazami
,
Y.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2011
, “
Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061301
.10.1115/1.4004022
5.
Petkovsek
,
M.
, and
Dulaz
,
M.
,
2013
, “
IR Measurements of the Thermodynamic Effects in Cavitating Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
756
763
.10.1016/j.ijheatfluidflow.2013.10.005
6.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a NACA0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
7.
Brennen
,
C. E.
,
1974
,
Cavitation and Bubble Dynamics
,
Concepts ETI and Oxford Science Publications
, Oxford University Press, New York.https://authors.library.caltech.edu/25017/5/BUBBOOK.pdf
8.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.10.1115/1.1596239
9.
Anh
,
D. L.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081102
.10.1115/1.4042257
10.
Anh
,
D. L.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Numerical Simulation Study of Cavitation in Liquefied Hydrogen
,”
Cryogenics
,
101
, pp.
29
35
.10.1016/j.cryogenics.2019.04.010
11.
Tsuda
,
S.
,
Tani
,
N.
, and
Yamanishi
,
N.
,
2012
, “
Development and Validation of a Reduced Critical Radius Model for Cryogenic Cavitation
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051301
.10.1115/1.4006469
12.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.10.1115/1.1883238
13.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2010
, “
Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows Around a Clark Y 11.7% Hydrofoil
,”
J. Fluid Sci. Technol.
,
5
(
3
), pp.
416
431
.10.1299/jfst.5.416
14.
Jin
,
M.-S.
,
Ha
,
C. T.
, and
Park
,
W.-G.
,
2013
, “
Numerical Study of Ventilated Cavitating Flow With Free Surface Effect
,”
J. Mech. Sci. Technol.
,
27
(
12
), pp.
3683
3691
.10.1007/s12206-013-0914-0
15.
Villafrance
,
D. O.
,
Gupta
,
A.
,
Ryan
,
M. E.
,
Glynn Holt
,
R.
, and
Grace
,
S. M.
,
2021
, “
An Assessment of Homogeneous Mixture Method Cavitation Models in Predicting Cavitation in Nozzle Flow
,”
ASME J. Fluids Eng.
,
143
(
1
), p.
011403
.10.1115/1.4048287
16.
Battistoni
,
M.
,
Duke
,
D. J.
,
Swantek
,
A. B.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
, and
Som
,
S.
,
2015
, “
Effect of Noncondensable Gas on Cavitating Nozzle
,”
Atomization Sprays
,
25
(
6
), pp.
453
483
.10.1615/AtomizSpr.2015011076
17.
Ahmed
,
A.
,
Duret
,
B.
,
Reveillon
,
J.
, and
Demoulin
,
F. X.
,
2020
, “
Numerical Simulation of Cavitation for Liquid Injection in Non-Condensation Gas
,”
Int. J. Multiphase Flow
,
127
, p.
103269
.10.1016/j.ijmultiphaseflow.2020.103269
18.
Cheng
,
H.
,
Long
,
X.
,
Ji
,
B.
,
Peng
,
X.
, and
Farhat
,
M.
,
2021
, “
A New Euler-Lagrangian Cavitation Model for Tip-Vortex Cavitation With the Effect of Non-Condensation Gas
,”
Int. J. Multiphase Flow
,
134
, p.
103441
.10.1016/j.ijmultiphaseflow.2020.103441
19.
Yu
,
A.
,
Tang
,
Q.
, and
Zhou
,
D.
,
2020
, “
Entropy Production Analysis in Thermodynamic Cavitating Flow With the Consideration of Local Compressibility
,”
Int. J. Heat Mass Transfer
,
153
, p.
119604
.10.1016/j.ijheatmasstransfer.2020.119604
20.
Li
,
W.
,
Yang
,
Y.
,
Shi
,
W.-D.
,
Zhao
,
X.
, and
Li
,
W.
,
2018
, “
The Correction and Evaluation of Cavitation Model Considering the Thermodynamic Effect
,”
Math. Probl. Eng.
,
2018
, p.
7217513
.10.1155/2018/7217513
21.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperature With Special Enphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.10.1016/j.ijheatmasstransfer.2016.05.107
22.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
, La Canada, CA.https://www.academia.edu/1160786/Turbulence_modeling_for_CFD
23.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
24.
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2017
, “
Comparative Evaluation of Phase-Change Mechanisms for the Prediction of Flashing Flows
,”
Int. J. Multiphase Flow
,
95
, pp.
257
270
.10.1016/j.ijmultiphaseflow.2017.06.006
25.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of Turbulence Model Influence on the Numerical Simulation of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
26.
Yee
,
H. C.
,
1987
, “
Upwind and Symmetric Shock-Capturing Schemes
,” NASA, Moffett Field, CA, NASA Technical Memorandum No. 89464.https://www.researchgate.net/publication/24321968_Upwind_and_symmetric_shock-capturing_schemes
27.
Hoffmann
,
A. K.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics
, 4th ed., Vol.
II
,
A Publication of Engineering Education System
,
Wichita, KS
.
28.
Allmaras
,
S. R.
,
Johnson
,
F. T.
, and
Spalart
,
P. R.
,
2012
, “
Modification and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model
,” Seventh International Conference on Computational Fluid Dynamics, Big Island, HI, July 9–13, Paper No.
ICCFD7-1902
.https://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
29.
Rouse
,
H.
, and
McNown
,
J. S.
,
1948
, “Cavitation and Pressure Distribution Head Forms at Zero Angle of Yaw,”
State University of Iowa
, Iowa City, IA, Paper No.
420
.https://ir.uiowa.edu/cgi/viewcontent.cgi?article=1032&context=uisie
30.
Ducoin
,
A.
,
Huang
,
B.
, and
Young
,
Y. L.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flow Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach.
,
2012
, p.
215678
.10.1155/2012/215678
You do not currently have access to this content.