Abstract

A three-dimensional laminar flow model was used for 37 Reynolds numbers (0.1, 0.2…1, 2…10, 20…100, and 200…1000) through six rectangular microchannels (aspect ratios: 1, 0.75, 0.5, 0.25, 0.2, and 0.125) to develop correlations for hydrodynamic entrance length. The majority of the Reynolds numbers are in the low regime (Re < 100) to fulfill the need to determine the hydrodynamic entrance length for microchannels. Examination of the fully developed flow condition was considered using the velocity or fRe criteria. Numerical results from the present simulations were validated by comparing the fRe results. Two new correlations were developed from a vast amount of numerical data (222 simulations). The velocity criterion correlations predict entrance length with a mean error of 4.67% and maximum error of 10.28%. The fRe criterion generated better correlations and were developed as a function of aspect ratio to predict entrance length with a mean error less than 2% and maximum error of 5.75% for 0.1 ≤ Re ≤ 1000 and 0 ≤ α ≤ ∞.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron. Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.10.1115/1.4024354
3.
Yao
,
X.
,
Zhang
,
Y.
,
Du
,
L.
,
Liu
,
J.
, and
Yao
,
J.
,
2015
, “
Review of the Applications of Microreactors
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
519
539
.10.1016/j.rser.2015.03.078
4.
Suryawanshi
,
P. L.
,
Gumfekar
,
S. P.
,
Bhanvase
,
B. A.
,
Sonawane
,
S. H.
, and
Pimplapure
,
M. S.
,
2018
, “
A Review on Microreactors: Reactor Fabrication, Design, and Cutting-Edge Applications
,”
Chem. Eng. Sci.
,
189
, pp.
431
448
.10.1016/j.ces.2018.03.026
5.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages–Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.10.1080/01457630304040
6.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
2000
, “
Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design
,”
ASME Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.10.1115/1.3097347
7.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
, New York.
8.
Wiginton
,
C. L.
, and
Dalton
,
C.
,
1970
, “
Incompressible Laminar Flow in the Entrance Region of a Rectangular Duct
,”
ASME J. Appl. Mech.
,
37
(
3
), pp.
854
856
.10.1115/1.3408620
9.
Fleming
,
D. P.
, and
Sparrow
,
E. M.
,
1969
, “
Flow in the Hydrodynamic Entrance Region of Ducts of Arbitrary Cross Section
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
345
354
.10.1115/1.3580173
10.
Han
,
L. S.
,
1960
, “
Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts
,”
ASME J. Appl. Mech.
,
27
(
3
), pp.
403
409
.10.1115/1.3644015
11.
McComas
,
S. T.
,
1967
, “
Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Section
,”
ASME J. Basic Eng.
,
89
(
4
), pp.
847
850
.10.1115/1.3609713
12.
Lundgren
,
T. S.
,
Sparrow
,
E. M.
, and
Starr
,
J. B.
,
1964
, “
Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section
,”
ASME J. Basic Eng.
,
86
(
3
), pp.
620
626
.10.1115/1.3653186
13.
Shah
,
R. K.
, and
London
,
A. L.
,
1971
,
Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts: A Summary of Analytical Solutions
,
Stanford University
,
Stanford, CA
.
14.
Miller
,
R. W.
, and
Han
,
L. S.
,
1971
, “
Pressure Losses for Laminar Flow in the Entrance Region of Ducts of Rectangular and Equilateral Triangular Cross Section
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
1083
1087
.10.1115/1.3408927
15.
White
,
F. M.
,
2005
,
Viscous Fluid Flow
,
McGraw-Hill Education
, New York.
16.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
17.
ANSYS
,
2017
, “
Fluent Academic Research, Release 18.1
,” ANSYS, Canonsburg, PA.
18.
MATLAB
,
2018
, “
MATLAB 2018a
,” The MathWorks, Natick, MA.
19.
Goldstein
,
R. J.
, and
Kreid
,
D. K.
,
1967
, “
Measurement of Laminar Flow Development in a Square Duct Using a Laser-Doppler Flowmeter
,”
ASME J. Appl. Mech.
,
34
(
4
), pp.
813
818
.10.1115/1.3607839
20.
Beavers
,
G. S.
,
Sparrow
,
E. M.
, and
Magnuson
,
R. A.
,
1970
, “
Experiments on Hydrodynamically Developing Flow in Rectangular Ducts of Arbitrary Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
689
701
.10.1016/0017-9310(70)90043-8
21.
Ahmad
,
T.
, and
Hassan
,
I.
,
2010
, “
Experimental Analysis of Microchannel Entrance Length Characteristics Using Microparticle Image Velocimetry
,”
ASME J. Fluids Eng.
,
132
(
4
), pp.
041102
041113
.10.1115/1.4001292
22.
Chen
,
R. Y.
,
1973
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
153
158
.10.1115/1.3446948
You do not currently have access to this content.