Abstract

The effects of the cross-sectional area of a volute on suction recirculation and cavitation in a centrifugal pump were investigated. The pump performance and fluid flow were analyzed using both steady and unsteady three-dimensional Reynolds-averaged Navier–Stokes analyses. The shear stress transport (SST) model was adopted as a turbulence closure model, and a simplified Rayleigh–Plesset cavitation model and a homogeneous two-phase mixture model were used to simulate the cavitating flow inside the pump. A constant to determine the designed circumferential velocity of the volute was selected as the geometric parameter for a parametric study. The hydraulic efficiency, head coefficient, blockage in front of the impeller, and critical cavitation number for a head-drop of 3% were selected as the performance parameters to evaluate the hydraulic performance. The results show that unlike the blockage, the hydraulic and suction performances were affected significantly by the volute shape. Both steady and unsteady flow analyses showed that the onset and development of suction recirculation were relatively unaffected by the volute geometry and the best efficiency point of the pump.

References

1.
Kim
,
K. Y.
,
Samad
,
A.
, and
Benini
,
E.
,
2019
,
Design Optimization of Fluid Machinery: Applying Computational Fluid Dynamics and Numerical Optimization
,
Wiley-Blackwell
,
Singapore
.
2.
Gülich
,
J. F.
,
1989
,
Centrifugal Pumps
,
Springer
,
New York
.
3.
Hallam
,
J. L.
,
1982
, “
Centrifugal Pumps: Which Suction Specific Speeds Are Acceptable
,”
Hydrocarbon Process
,
61
(
4
), pp.
195
197
.https://www.osti.gov/biblio/7018728
4.
Cowan
,
D.
,
Bradshaw
,
S.
, and
Liebner
,
T.
,
2013
, “
Influence of Impeller Suction Specific Speed on Vibration Performance
,”
Proceedings of the 29th International Pump Users Symposium
, Turbomachinery Laboratories, Texas A&M Engineering Experiment Station, Houston, TX, Oct. 1–3, pp.
1
15
.https://pdfs.semanticscholar.org/a222/73658cff0a5a6c8aa2c626866834900a9aa6.pdf
5.
Budris
,
R.
,
1993
, “
The Shortcomings of Using Pump Suction Specific Speed Alone to Avoid Suction Recirculation Problems
,”
Proceedings of the 10th International Pump Users Symposium
, Turbomachinery Laboratories, Department of Mechanical Engineering, Texas A&M University, Houston, TX, Mar. 9–11, pp.
91
96
.https://oaktrust.library.tamu.edu/handle/1969.1/164217
6.
Stoffel
,
B.
, and
Jaeger
,
R.
,
1996
, “
Experimental Investigations in Respect to the Relavance of Suction Specific Speed for the Performance and Reliability of Centrifugal Pumps
,”
Proceedings of the 13th International Pump Users Symposium
, Turbomachinery Laboratories, Texas A&M Engineering Experiment Station, Houston, TX, Mar. 5–7, pp.
3
12
.https://oaktrust.library.tamu.edu/handle/1969.1/164169
7.
Ashihara
,
K.
, and
Goto
,
A.
,
2002
, “
Effects of Blade Loading on Pump Inducer Performance
,”
ASME
Paper No. FEDSM2002-31201. 10.1115/FEDSM2002-31201
8.
Shim
,
H. S.
,
Kim
,
K. Y.
, and
Choi
,
Y. S.
,
2018
, “
Three-Objective Optimization of a Centrifugal Pump to Reduce Flow Recirculation and Cavitation
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091202
.10.1115/1.4039511
9.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Kataoka
,
D.
,
Horiguchi
,
H.
, and
Wahl
,
F.
,
2001
, “
Effects of Alternate Leading Edge Cutback on Unsteady Cavitation in 4-Bladed Inducers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
762
770
.10.1115/1.1411969
10.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.10.1115/1.4030914
11.
Zhu
,
B.
, and
Chen
,
H.
,
2017
, “
Analysis of the Staggered and Fixed Cavitation Phenomenon Observed in Centrifugal Pumps Employing a Gap Drainage Impeller
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031301
.10.1115/1.4034952
12.
Lorett
,
J. A.
, and
Gopalakrishnan
,
S.
,
1986
, “
Interaction Between Impeller and Volute of Pumps at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
108
(
1
), pp.
12
18
.10.1115/1.3242534
13.
Brennen
,
C. E.
,
2007
, “
Multifrequency Instability of Cavitating Inducers
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
731
736
.10.1115/1.2734238
14.
Wang
,
Y.
,
Liu
,
H.
,
Liu
,
D.
,
Yuan
,
S.
,
Wang
,
J.
, and
Jiang
,
L.
,
2016
, “
Application of the Two-Phase Three-Component Computational Model to Predict Cavitating Flow in a Centrifugal Pump and Its Validation
,”
Comput. Fluids
,
131
, pp.
142
150
.10.1016/j.compfluid.2016.03.022
15.
Wang
,
J.
,
Wang
,
Y.
,
Liu
,
H.
,
Si
,
Q.
, and
Dular
,
M.
,
2018
, “
Rotating Corrected-Based Cavitation Model for a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111301
.10.1115/1.4040068
16.
Franc
,
J. P.
,
2007
,
The Rayleigh-Plesset Equation: A Simple and Powerful Tool to Understand Various Aspects of Cavitation
,
Springer
,
Vienna, Austria
.
17.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Wiley
,
New York
.
18.
ANSYS
,
2014
,
ANSYS CFX-Solver Theory Guide-Release 15.0
,
ANSYS
,
Canonsburg, PA
.
19.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No.
89
0366
.10.2514/6.1989-366
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
21.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.10.1080/10618562.2013.878800
22.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
23.
Heo
,
M. W.
,
Ma
,
S. B.
,
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2016
, “
High-Efficiency Design Optimization of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
3917
3927
.10.1007/s12206-016-0803-4
24.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2018
, “
Influence of Geometry of Inlet Guide Vanes on Pressure Fluctuations of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091204
.10.1115/1.4039714
25.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30 to June 4, Paper No.
152
. https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
26.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
,
2006
, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.10.1115/1.2353265
27.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.10.1115/1.4036673
28.
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2019
, “
Evaluation of Rotor-Stator Interface Models for the Prediction of the Hydraulic and Suction Performance of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111106
.10.1115/1.4043272
29.
Thakur
,
R.
,
Gropp
,
W.
, and
Toonen
,
B.
,
2005
, “
Operations in Message Passing Interface One-Sided
,”
Int. J. High Performance Comput. Appl.
,
19
(
2
), pp.
119
128
.10.1177/1094342005054258
30.
Qiu
,
X.
,
Japikse
,
D.
, and
Anderson
,
M.
,
2008
, “
A Meanline Model for Impeller Flow Recirculation
,”
ASME
Paper No. GT2008-51349. 10.1115/GT2008-51349
31.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.10.1115/1.2819284
32.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Concepts ETI
, Norwich,
Vermont
.
33.
Choi, Y.-S., Kim, K.-Y., Yoo, I.-S., and Lee, Y.-K.
,
2017
, “
Development of Design Program for Centrifugal and Mixed-Flow Pump (4th Year Report)
,” Korea Ministry of Trade, Industry and Energy, Sejong-si, South Korea, Report No. 10044860.
34.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Gruop Ltd
,
Harlow, Essex, UK
.
35.
Japikse
,
D.
,
Marscher
,
W. D.
, and
Furst
,
R. B.
,
1997
,
Centrifugal Pump Design and Performance
,
Concepts ETI
, Norwich,
VT
.
36.
Breugelmans
,
F. A.
, and
Sen
,
M.
,
1982
, “
Prerotation and Fluid Recirculation in the Suction Pipe of Contrifugal Pumps
,”
Proceedings of the 11th Turbomachinery Symposium
, Texas A&M University, Turbomachinery Laboratories, Houston, TX, pp.
165
180
.
37.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part II: Transient Hysteresis in the Characteristic
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
627
632
.10.1115/1.2823515
38.
Yamanishi
,
N.
,
Fukao
,
S.
,
Qiao
,
X.
,
Kato
,
C.
, and
Tsujimoto
,
Y.
,
2007
, “
LES Simulation of Backflow Vortex Structure at the Inlet of an Inducer
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
587
594
.10.1115/1.2717613
39.
Franz
,
R.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1990
, “
The Rotordynamic Forces on a Centrifugal Pump Impeller in the Presence of Cavitation
,”
ASME J. Fluids Eng.
,
112
(
3
), pp.
264
271
.10.1115/1.2909399
40.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
41.
Bachert
,
R.
,
Stoffel
,
B.
, and
Dular
,
M.
,
2010
, “
Unsteady Cavitation at the Tongue of the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061301
.10.1115/1.4001570
42.
Adkins
,
D. R.
, and
Brennen
,
C. E.
,
1988
, “
Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
20
28
.10.1115/1.3243504
43.
Wo
,
A. M.
, and
Bons
,
J. P.
,
1994
, “
Flow Physics Leading to System Instability in a Centrifugal Pump
,”
ASME J. Turbomach.
,
116
(
4
), pp.
612
620
.10.1115/1.2929451
You do not currently have access to this content.