In this paper, we have studied the active flow control (AFC) of a pitching airfoil by means of a tangential synthetic jet actuator (SJA) using computational fluid dynamics. The airfoil was NACA0012 which pitched about its quarter-chord with a sinusoidal motion at Reynolds number of 1 × 106. Several high-frequency actuations (HFAs), in the order of nominal shedding frequency of static condition; Fj+= 1.0, 2.0, and 3.0, one low frequency actuation Fj+= 0.2, and one very low frequency actuation Fj+= 0.047 where the frequency of the SJA matched that of the pitching motion of the airfoil were considered. The resulting lift and drag diagrams were compared with each other, as well as with the uncontrolled case and the continuous jet. It was found that oscillations in drag and lift hysteresis curves with the associated local minima and maxima were connected to the ingestion/expulsion cycles of the SJA. At the very low-frequency actuation (LFA), which synched the frequency of the SJA to the frequency of the pitching motion, several phase differences (Δφ) between SJA and pitching motion were studied. Our numerical results have demonstrated that the synched frequency case with Δφ=180deg was far more superior to all other controlled cases studied here and the continued jet of our previous work. This condition even performed better than high frequency actuation with higher jet velocity ratios.

References

1.
Ham
,
N. D.
, and
Garelick
,
M. S.
,
1968
, “
Dynamic Stall Considerations in Helicopter Rotors
,”
J. Am. Helicopter Soc.
,
13
(
2
), pp.
49
55
.
2.
McCroskey
,
W.
,
Carr
,
L.
, and
McAlister
,
K.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
.
3.
McAlister
,
K.
, and
Carr
,
L.
,
1979
, “
Water Tunnel Visualizations of Dynamic Stall
,”
ASME J. Fluids Eng.
,
101
(
3
), pp.
376
380
.
4.
McAlister
,
K.
,
Pucci
,
S.
,
McCroskey
,
W.
, and
Carr
,
L.
,
1982
, “
An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume 2. Pressure and Force Data
,” NASA Ames Research Center, Moffett Field, CA, Technical Report No.
NASA TM-84245
.https://ntrs.nasa.gov/search.jsp?R=19830003778
5.
Visbal
,
M. R.
, and
Shang
,
J.
,
1989
, “
Investigation of the Flow Structure Around a Rapidly Pitching Airfoil
,”
AIAA J.
,
27
(
8
), pp.
1044
1051
.
6.
Tuncer
,
I. H.
,
Wu
,
J. C.
, and
Wang
,
C.
,
1990
, “
Theoretical and Numerical Studies of Oscillating Airfoils
,”
AIAA J.
,
28
(
9
), pp.
1615
1624
.
7.
Gendrich
,
C. P.
,
Koochesfahani
,
M. M.
, and
Visbal
,
M. R.
,
1995
, “
Effects of Initial Acceleration on the Flow Field Development Around Rapidly Pitching Airfoils
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
45
49
.
8.
Ekaterinaris
,
J. A.
, and
Platzer
,
M. F.
,
1998
, “
Computational Prediction of Airfoil Dynamic Stall
,”
Prog. Aerosp. Sci.
,
33
(
11–12
), pp.
759
846
.
9.
Sheng
,
W. W.
,
Galbraith
,
R. A.
, and
Coton
,
F. N.
,
2008
, “
Prediction of Dynamic Stall Onset for Oscillatory Low-Speed Airfoils
,”
ASME J. Fluids Eng.
,
130
(
10
), p.
101204
.
10.
Martinat
,
G.
,
Braza
,
M.
,
Hoarau
,
Y.
, and
Harran
,
G.
,
2008
, “
Turbulence Modelling of the Flow Past a Pitching NACA0012 Airfoil at 105 and 106 Reynolds Numbers
,”
J. Fluids Struct.
,
24
(
8
), pp.
1294
1303
.
11.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.
12.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2012
, “
Turbulence Modeling of Deep Dynamic Stall at Relatively Low Reynolds Number
,”
J. Fluids Struct.
,
33
, pp.
191
209
.
13.
Gharali
,
K.
, and
Johnson
,
D. A.
,
2013
, “
Active Control of a Stalled Airfoil Through Steady or Unsteady Actuation Jets
,”
J. Fluids Struct
,
42
, pp.
228
244
.
14.
Lee
,
T. T.
, and
Su
,
Y. Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051105
.
15.
Tseng
,
C. C.
, and
Cheng
,
Y. E.
,
2015
, “
Numerical Investigations of the Vortex Interactions for a Flow Over a Pitching Foil at Different Stages
,”
J. Fluids Struct.
,
58
, pp.
291
318
.
16.
Rosti
,
M. E.
,
Omidyeganeh
,
M.
, and
Pinelli
,
A.
,
2016
, “
Direct Numerical Simulation of the Flow Around an Aerofoil in Ramp-Up Motion
,”
Phys. Fluids
,
28
(
2
), p.
025106
.
17.
Tang
,
H.
,
Salunkhe
,
P.
,
Zheng
,
Y.
,
Du
,
J.
, and
Wu
,
Y.
,
2014
, “
On the Use of Synthetic Jet Actuator Arrays for Active Flow Separation Control
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
1
10
.
18.
Greenblatt
,
D.
,
Nishri
,
B.
,
Darabi
,
A.
, and
Wygnanski
,
I.
,
2001
, “
Dynamic Stall Control by Periodic Excitation, Part 2: Mechanisms
,”
J. Aircr.
,
38
(
3
), pp.
439
447
.
19.
Rehman
,
A.
, and
Kontis
,
K.
,
2006
, “
Synthetic Jet Control Effectiveness on Stationary and Pitching Airfoils
,”
J. Aircr.
,
43
(
6
), pp.
1782
1789
.
20.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.
21.
Kordík
,
J.
, and
Trávníček
,
Z.
,
2013
, “
Novel Fluidic Diode for Hybrid Synthetic Jet Actuator
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101101
.
22.
Zhao
,
G.
, and
Zhao
,
Q.
,
2014
, “
Parametric Analyses for Synthetic Jet Control on Separation and Stall Over Rotor Airfoil
,”
Chin. J. Aeronaut.
,
27
(
5
), pp.
1051
1061
.
23.
Muller-Vahl
,
H. F.
,
Strangfeld
,
C.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2014
, “
Control of Thick Airfoil, Deep Dynamic Stall Using Steady Blowing
,”
AIAA J.
,
53
(
2
), pp.
277
295
.
24.
Monir
,
H. E.
,
Tadjfar
,
M.
, and
Bakhtian
,
A.
,
2014
, “
Tangential Synthetic Jets for Separation Control
,”
J. Fluids Struct.
,
45
, pp.
50
65
.
25.
Chapin
,
V.
, and
Benard
,
E.
,
2015
, “
Active Control of a Stalled Airfoil Through Steady or Unsteady Actuation Jets
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091103
.
26.
Taylor
,
K.
, and
Amitay
,
M.
,
2015
, “
Dynamic Stall Process on a Finite Span Model and Its Control Via Synthetic Jet Actuators
,”
Phys. Fluids
,
27
(
7
), p.
077104
.
27.
Li
,
W.
,
Jin
,
D.
, and
Zhao
,
Y.
,
2017
, “
Efficient Nonlinear Reduced-Order Modeling for Synthetic-Jet-Based Control at High Angle of Attack
,”
Aerosp. Sci. Tech.
,
62
, pp.
98
107
.
28.
Zhao
,
Q.
,
Ma
,
Y.
, and
Zhao
,
G.
,
2017
, “
Parametric Analyses on Dynamic Stall Control of Rotor Airfoil Via Synthetic Jet
,”
Chin. J. Aeronautics
,
30
(
6
), pp.
1818
1834
.
29.
Wen
,
X.
, and
Tang
,
H.
,
2017
, “
Dye Visualization of in-Line Twin Synthetic Jets in Crossflows—A Parametric Study
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091203
.
30.
Tadjfar
,
M.
, and
Asgari
,
E.
,
2017
, “
Active Flow Control of Dynamic Stall by Means of Continuous Jet Flow at Reynolds Number of 1 × 106
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011107
.
31.
Asgari
,
E.
, and
Tadjfar
,
M.
,
2016
, “
Active Flow Control of Dynamic Stall by Means of Jet Flow at High Reynolds Number of 1,000,000
,”
ASME
Paper No. FEDSM2016-7508.
32.
Kamari
,
D.
,
Tadjfar
,
M.
, and
Madadi
,
A.
,
2018
, “
Optimization of SD7003 Airfoil Performance Using TBL and CBL at Low Reynolds Numbers
,”
Aerosp. Sci. Tech.
,
79
, pp.
199
211
.
33.
Kotapati
,
R. B.
,
Mittal
,
R.
,
Marxen
,
O.
,
Ham
,
F.
,
You
,
D.
, and
Cattafesta
,
L.
,
2010
, “
Nonlinear Dynamics and Synthetic-Jet-Based Control of a Canonical Separated Flow
,”
J. Fluid Mech.
,
654
, pp.
65
97
.
34.
Glezer
,
A.
,
2011
, “
Some Aspects of Aerodynamic Flow Control Using Synthetic-Jet Actuation
,”
Phil. Trans. R. Soc. A
,
369
(
1940
), pp.
1476
1494
.
You do not currently have access to this content.