Three-dimensional (3D) numerical flow simulations with a mass transfer cavitation model are performed to analyze cloud cavitation at two different flow configurations, i.e., hydrofoil and orifice flows, focusing on the turbulence and cavitation model interaction, including a mixture eddy viscosity reduction and cavitation model parameter modification. For the cavitating flow around the hydrofoil with circular leading edge, a good agreement to the measured shedding frequencies as well as local cavitation structures is obtained over a wide range of operation points, even with a moderate boundary layer resolution, i.e., utilizing wall functions (WF), which are found to be adequate to capture the re-entrant jet reasonably in the absence of viscous separation. Simulations of the orifice flow, that exhibit significant viscous single-phase (SP) flow separation, are analyzed concerning the prediction of choking and cloud cavitation. A low-Reynolds number turbulence approach in the orifice wall vicinity is suggested to capture equally the mass flow rate, flow separation, and cloud shedding with satisfying accuracy in comparison to in-house measurements. Local cavitation structures are analyzed in a time-averaged manner for both cases, revealing a reasonable prediction of the spatial extent of the cavitation zones. However, different cavitation model parameters are utilized at hydrofoil and orifice for best agreement with measurement data.

References

1.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
(ICMF), Yokohama, Japan, May 30–June 4, Paper No. 152.
2.
Frobenius
,
M.
,
Schilling
,
R.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Numerical and Experimental Investigations of the Cavitating Flow in a Centrifugal Pump Impeller
,”
ASME
Paper No. FEDSM2002-31006.
3.
Frobenius
,
M.
,
Schilling
,
R.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Ludwig
,
G.
,
2003
, “
Three-Dimensional Unsteady Cavitation Effects on a Single Hydrofoil and in a Radial Pump—Measurements and Numerical Simulations—Part 2: Numerical Simulation
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–5, Paper No. Cav03-GS-9-005.
4.
Dular
,
M.
,
Bachert
,
R.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
5.
Pelz
,
P.
,
Keil
,
T.
, and
Groß
,
T. F.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.
6.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech.—B/Fluids
,
24
(
4
), pp.
522
538
.
7.
Li
,
D. Q.
,
Grekula
,
M.
, and
Lindell
,
P.
,
2009
, “
A Modified SST k-ω Turbulence Model to Predict the Steady and Unsteady Sheet Cavitation on 2D and 3D Hydrofoils
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20, Paper No. 107.
8.
Li
,
Z.
,
Pourquie
,
M.
, and
Terwisga
,
T. J. C.
,
2010
, “
A Numerical Study of Steady and Unsteady Cavitation on a 2D Hydrofoil
,”
J. Hydrodyn., Ser. B
,
22
(
5
), pp.
770
777
.
9.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y.
,
2012
, “
Evaluation of Cavitation Models for Prediction of Transient Cavitating Flows Around a Pitching Hydrofoil
,”
Eighth International Symposium on Cavitation
, Singapore, Aug. 14–16, pp.
601
608
.
10.
Ducoin
,
A.
,
Huang
,
B.
, and
Young
,
Y.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach.
,
2012
, p. 215678.
11.
Huang
,
B.
,
Young
,
Y.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.
12.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y.
,
2013
, “
Physical and Numerical Investigation of Cavitating Flows Around a Pitching Hydrofoil
,”
Phys. Fluids
,
25
(
10
), p.
102109
.
13.
Tran
,
T.
,
Nennemann
,
B.
,
Vu
,
T.
, and
Guibault
,
F.
,
2014
, “
Numerical Simulation of Unsteady Sheet/Cloud Cavitation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
5
), p.
052012
.
14.
Frikha
,
S.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2008
, “
Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section
,”
Int. J. Rotating Mach.
,
2008
, p.
146234
.
15.
Morgut
,
M.
,
Nobile
,
E.
, and
Biluš
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.
16.
Salvadori
,
S.
,
Cappelletti
,
A.
, and
Martelli
,
F.
,
2012
, “
Numerical Prediction of Cavitation in Pumps
,”
15th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept. 4–7.https://www.researchgate.net/publication/259073627_Numerical_Prediction_of_Cavitation_in_Pumps
17.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
18.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10.https://www.researchgate.net/publication/248179422_Two-phase_flow_structure_of_cavitation_Experiment_and_modeling_of_unsteady_effects
19.
Biluš
,
I.
,
Morgut
,
M.
, and
Nobile
,
E.
,
2013
, “
Simulation of Sheet and Cloud Cavitation With Homogeneous Transport Models
,”
Int. J. Simul. Modell.
,
12
(
2
), pp.
94
106
.
20.
Jošt
,
D.
,
Škerlavaj
,
A.
,
Morgut
,
M.
, and
Nobile
,
E.
,
2017
, “
Numerical Prediction of Cavitating Vortex Rope in a Draft Tube of a Francis Turbine With Standard and Calibrated Cavitation Model
,”
J. Phys.: Conf. Ser.
,
813
(
1
), p.
012045
.
21.
Chatagny
,
L.
, and
Berten
,
S.
,
2016
, “
Challenges and Open Questions in Cavitation Simulations for Centrifugal Pump Applications
,”
Third International Rotating Equipment Conference
, Düsseldorf, Germany, Sept. 14–15, pp.
765
775
.
22.
Salvadori
,
S.
,
Cappelletti
,
A.
,
Montomoli
,
F.
,
Nicchio
,
A.
, and
Martelli
,
F.
,
2015
, “
Experimental and Numerical Evaluation of the NPSHR Curve of an Industrial Centrifugal Pump
,”
11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
, Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-011
.https://www.researchgate.net/publication/272443365_Experimental_and_Numerical_Evaluation_of_the_NPSHR_Curve_of_an_Industrial_Centrifugal_Pump
23.
Limbach
,
P.
, and
Skoda
,
R.
,
2017
, “
Numerical and Experimental Analysis of Cavitating Flow in a Low Specific Speed Centrifugal Pump With Different Surface Roughness
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101201
.
24.
Limbach
,
P.
,
Kimoto
,
M.
,
Deimel
,
C.
, and
Skoda
,
R.
,
2014
, “
Numerical 3D Simulation of the Cavitating Flow in a Centrifugal Pump With Low Specific Speed and Evaluation of the Suction Head
,”
ASME
Paper No. GT2014-26089.
25.
Böhm
,
R.
,
1998
, “
Erfassung Und Hydrodynamische Beeinflussung Fortgeschrittener Kavitationszustände Und Ihrer Erosiven Aggressivität
,” Ph.D. thesis, Technical University of Darmstadt, Darmstadt, Germany.
26.
Hofmann
,
M.
,
Lohrberg
,
H.
,
Ludwig
,
G.
,
Stoffel
,
B.
, and
Reboud
,
J. L.
,
1999
, “
Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 1: Visualisation
,”
ASME
Paper No. FEDSM99-6755.
27.
Reboud
,
J. L.
,
Fortes-Patella
,
R.
,
Hofmann
,
M.
,
Lohrberg
,
H.
, and
Ludwig
,
G.
,
1999
, “
Numerical and Experimental Investigations on the Self-Oscillating Behaviour of Cloud Cavitation—Part 2: Dynamic Pressures
,”
ASME
Paper No. FEDSM99-7259.
28.
Bachert
,
B.
,
Dular
,
M.
,
Baumgarten
,
S.
,
Ludwig
,
G.
, and
Stoffel
,
B.
,
2004
, “
Experimental Investigations concerning Erosive Aggressiveness of Cavitation at Different Test Configurations
,”
ASME
Paper No. HT-FED2004-56597.
29.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Methods Fluids
,
61
(
12
), pp.
1388
1410
.
30.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag.
,
34
(
200
), pp.
94
98
.
31.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
32.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
New York
.
33.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
35.
Menter
,
F. R.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
16th Brazilian Congress of Mechanical Engineering
, Uberlandia, Brazil, Nov. 26–30, pp.
117
127
.
36.
Iben
,
U.
,
Morozov
,
A.
,
Winklhofer
,
E.
, and
Skoda
,
R.
,
2011
, “
Optical Investigations of Cavitating Flow Phenomena in Micro Channels Using a Nano Second Resolution
,”
Third International Cavitation Forum
(
WIMRC
), Warwick, UK, July 4–6, pp. 1–7.https://www.researchgate.net/publication/265092308_Optical_investigations_of_cavitating_flow_phenomena_in_micro_channels_using_a_nano_second_resolution
37.
Iben
,
U.
,
Morozov
,
A.
,
Winklhofer
,
E.
, and
Wolf
,
F.
,
2011
, “
Laser-Pulse Interferometry Applied to High-Pressure Fluid Flow in Micro Channels
,”
Exp. Fluids
,
50
(
3
), pp.
597
611
.
38.
Tomov
,
P.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
,
Bakir
,
F.
, and
Vertenoeuil
,
P.
,
2016
, “
Experimental Study of Aerated Cavitation in a Horizontal Venturi Nozzle
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
85
95
.
39.
Dular
,
M.
,
Bachert
,
R.
,
Schaad
,
C.
, and
Stoffel
,
B.
,
2007
, “
Investigation of a Re-Entrant Jet Reflection at an Inclined Cavity Closure Line
,”
Eur. J. Mech. B/Fluids
,
26
(
5
), pp.
688
705
.
40.
Callenaere
,
M.
,
Franc
,
J.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
41.
Franc
,
J.
,
2001
, “
Partial Cavity Instabilities and Re-Entrant Jet
,”
Fourth International Symposium on Cavitation
, Pasadena, CA, June 20–23, Paper No.
CAV2001:lecture.002
http://caltechconf.library.caltech.edu/50/.
42.
Blackman
,
R. B.
, and
Turkey
,
J. W.
,
1958
, “
The Measurement of Power Spectra, From the Point of View of Communications Engineering
,”
Bell. Syst. Tech. J.
,
37
(
1
), pp.
185
282
.
43.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
44.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1998
, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10, pp.
191
196
.
45.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2004
,
Fundamentals of Cavitation
(Fluid Mechanics and its Applications, Vol. 76),
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
46.
Kowalski
,
K.
,
Pollak
,
S.
, and
Hussong
,
J.
,
2017
, “
Experimental Investigation of Cavitation Induced Air Release
,”
EPJ Web Conf.
,
143
, p. 02054.
47.
Kowalski
,
K.
,
Pollak
,
S.
,
Skoda
,
R.
, and
Hussong
,
J.
,
2017
, “
Experimental Study on Cavitation-Induced Air Release in Orifice Flows
,”
ASME J. Fluids Eng.
,
140
(6), p. 061201.
48.
Dular
,
M.
, and
Petkovšek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion—Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
359
370
.
You do not currently have access to this content.