A novel scaling law for the tip vortex cavitation (TVC) noise was determined, employing the Rankine vortex model, the Rayleigh–Plesset equation, the lifting surface theory, the boundary layer effect, and the number of bubbles generated per unit time (N0). All terms appearing in the final derived scaling law are well known three-dimensional (3D) lifting surface parameters, except for N0. In this study, the dependence of N0 with inflow velocity and hydrofoil dimension is investigated experimentally while trying to retain the same TVC patterns among different experimental conditions. Afterward, the effect of N0 on the TVC noise is analyzed. Optimal TVC observation conditions are determined from consideration of cavitation number and Reynolds number of two comparable conditions. Two geometrically scaled hydrofoils are concurrently placed in a cavitation tunnel for the hydrofoil size variation experiment. Wall effects and flow field interaction are prevented with the aid of computational fluid dynamics. Images taken with a high‐speed camera are used to count N0 by visual inspection. The noise signals at all conditions are measured and an acoustic bubble counting technique, to supplement visual counting, is devised to determine N0 acoustically from the measured noise data. The broad-band noise scaling law incorporating N0 and the International Towing Tank Conference (ITTC) cavitation noise estimation rule for hydrofoil are both applied to estimate the TVC noise level for comparison with the measured noise level. The noise level estimated by the broad-band noise scaling law accounting for the acoustically estimated N0 gives the best agreement with the measured noise level.

References

1.
Strasberg
,
M.
,
1977
, “
Propeller Cavitation Noise After 35 Years of Study
,” Proceeding ASME Symposium on Noise and Fluids Engineering, Atlanta, GA, pp. 89–99.
2.
Choi
,
J. K.
, and
Chahine
,
G. L.
,
2007
, “
Modeling of Bubble Generated Noise in Tip Vortex Cavitation Inception
,”
Acta Acust. Acust.
,
93
(
4
), pp.
555
565
.
3.
Choi
,
J. K.
, and
Chahine
,
G. L.
,
2004
, “
Tip Vortex Cavitation Inception Study Using the Surface Averaged Pressure (SAP) Model Combined With a Bubble Splitting Model
,”
25th Symposium on Naval Hydrodynamics
, St. John's, NL, Canada, Aug. 8–13.
4.
Rebow
,
M.
,
Choi
,
J. K.
,
Choi
,
J.
,
Chahine
,
G. L.
, and
Ceccio
,
S. L.
,
2004
, “
Experimental Validation of BEM Code Analysis of Bubble Splitting in a Tip Vortex Flow
,”
11th International Symposium on Flow Visualization
, University of Notre Dame, Notre Dame, IN, Aug. 9–12.
5.
Levkovskii
,
V. L.
,
1968
, “
Modeling of Cavitation Noise
,”
Sov. Phys. Acoust.
,
13
(
3
), pp.
337
339
.
6.
Alexandrov
,
K.
,
Bovis
,
A. G.
,
Huang
,
T. T.
,
Kuiper
,
G.
,
Minsaas
,
K. J.
,
Parkin
,
B. R.
,
Sasajima
,
T.
,
Suhrbier
,
K. R.
, and
Weitendorf
,
E. A.
,
1987
, “
ITTC Cavitation Committee Report[C]
,”
18th International Towing Tank Conference
, Kobe, Japan, pp.
183
190
.
7.
Oshima
,
A. A.
,
1990
, “
Study on Correlation of Vortex Cavitation Noise of Propeller Measured in Model Experiments and Full Scale
,”
J. Soc. Nav. Archit. Jpn.
,
1990
(
168
), pp.
89
96
.
8.
Bjorheden
,
O.
, and
Astrom
,
L.
,
1977
, “
Prediction of Propeller's Noise Spectra
,”
Det Norske Veritas Symposium on Hydrodynamics of Ship and Offshore Propulsion Systems
, Oslo, Norway, March 20–25.
9.
Park
,
C. S.
,
Seol
,
H. S.
,
Kim
,
K. S.
, and
Seong
,
W. J.
,
2009
, “
A Study on Propeller Noise Source Localization in a Cavitation Tunnel
,”
Ocean Eng.
,
36
(
9
), pp.
754
762
.
10.
Lecoffre
,
Y.
,
1999
,
Cavitation-Bubble Trackers
,
Balkema
,
Leiden, The Netherlands
, Chap. 9.
11.
Arndt
,
R. E.
, and
Maines
,
B. H.
,
2000
, “
Nucleation and Bubble Dynamics in Vortical Flows
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
488
493
.
12.
McCormick
,
B. W.
,
1962
, “
On Cavitation Produced by a Vortex Trailing From a Lifting Surface
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
369
379
.
13.
Wu
,
X.
,
Wendel
,
M.
,
Chahine
,
G.
, and
Riemer
,
B.
,
2014
, “
Gas Bubble Size Measurements in Liquid Mercury Using an Acoustic Spectrometer
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
031303
.
14.
Keller
,
A. P.
,
2001
, “
Cavitation Scale Effects–Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients
,”
4th International Symposium on Cavitation
, California Institute of Technology, Pasedena, CA, June 20–23.
15.
Amromin
,
E.
,
2014
, “
Development and Validation of Computational Fluid Dynamics Models for Initial Stages of Cavitation
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081303
.
16.
Shen
,
Y. T.
,
Gowing
,
S.
, and
Jessup
,
S.
,
2009
, “
Tip Vortex Cavitation Inception Scaling for High Reynolds Number Application
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071301
.
17.
Chang
,
N. A.
, and
Ceccio
,
S. L.
,
2011
, “
The Acoustic Emission of Cavitation Bubbles in Stretched Vortices
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
3209
3219
.
18.
Hsiao
,
C. T.
,
Chahine
,
G. L.
, and
Liu
,
H. L.
,
2003
, “
Scaling Effect on Prediction of Cavitation Inception in a Line Vortex Flow
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
53
60
.
19.
Park
,
K.
,
Seol
,
H.
,
Choi
,
W.
, and
Lee
,
S.
,
2009
, “
Numerical Prediction of Tip Vortex Cavitation Behavior and Noise Considering Nuclei Size and Distribution
,”
Appl. Acoust.
,
70
(
5
), pp.
674
680
.
20.
Singh
,
S.
,
Choi
,
J. K.
, and
Chahine
,
G. L.
,
2013
, “
Characterization of Cavitation Fields From Measured Pressure Signals of Cavitating Jets and Ultrasonic Horns
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091302
.
21.
Minnaert
,
M.
,
1933
, “
On Musical Air-Bubbles and the Sounds of Running Water
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
16
(
104
), pp.
235
248
.
22.
Park
,
J. S.
,
Lee
,
J. H.
, and
Seong
,
W. J.
,
2012
, “
Extrapolation of Model Noise Spectrum to Prototype Using Newly Developed Scaling Law in TVC Case
,” Naval Architects of Korea, Deagu, South Korea, May 31– June 1.
You do not currently have access to this content.