This study reports an efficient reduction of the drag exerted by a flow on a cylinder when the former is forced with a plasma actuator. A three-electrode plasma device (TED) disposed on the surface of the body is considered, and the effect of the actuation frequency and amplitude is studied. Particle image velocimetry (PIV) measurements provided a detailed information that was processed to obtain the time-averaged drag force and to compare the performances of TED actuator and the canonical dielectric discharge barrier actuator. For the Reynolds number considered (Re = 5500), excitations with the TED actuator were more efficient, achieving drag reductions that attained values close to 40% with high net energy savings. The reduction of coherent structures using the instantaneous vorticity fields and a clustering technique allowed us to gain insight into the physical mechanisms involved in these phenomena. This highlights that the symmetrical forcing of the wake flow at its resonant frequency with the TED promotes symmetrical vorticity patterns which favor drag reductions.

References

1.
Artana
,
G.
,
D'Adamo
,
J.
,
Leger
,
L.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2002
, “
Flow Control With Electrohydrodynamic Actuators
,”
AIAA J.
,
40
(
9
), pp.
1773
1779
.
2.
Moreau
,
E.
,
2007
, “
Airflow Control by Non Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
605
636
.
3.
Wang
,
J. J.
,
Choi
,
K. S.
,
Feng
,
L. H.
,
Jukes
,
T. N.
, and
Whalley
,
R. D.
,
2013
, “
Recent Developments in DBD Plasma Flow Control
,”
Prog. Aerosp. Sci.
,
62
, pp.
52
78
.
4.
Benard
,
N.
, and
Moreau
,
E.
,
2010
, “
Capabilities of the Dielectric Barrier Discharge Plasma Actuator for Multi-Frequency Excitations
,”
J. Phys. D: Appl. Phys.
,
43
(
14
), p.
145201
.
5.
Bhattacharya
,
S.
, and
Gregory
,
J. W.
,
2015
, “
Effect of Three-Dimensional Plasma Actuation on the Wake of a Circular Cylinder
,”
AIAA J.
,
53
(
4
), pp.
958
967
.
6.
Sosa
,
R.
,
Grondona
,
D.
,
Marquez
,
A.
,
Artana
,
G.
, and
Kelly
,
H.
,
2010
, “
On the Induced Gas Flow by a Trielectrode Plasma Curtain at Atmospheric Pressure
,”
IEEE Trans. Ind. Appl.
,
46
(
3
), pp.
1132
1137
.
7.
Corke
,
T.
,
Enloe
,
C.
, and
Wilkinson
,
S.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
505
529
.
8.
Duchmann
,
A.
,
Simon
,
B.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2014
, “
Dielectric Barrier Discharge Plasma Actuators for in-Flight Transition Delay
,”
AIAA J.
,
52
(
2
), pp.
358
367
.
9.
D'Adamo
,
J.
,
Sosa
,
R.
, and
Artana
,
G.
,
2014
, “
Active Control of a Backward Facing Step Flow With Plasma Actuators
,”
ASME J. Fluids Eng.
,
136
(
12
), p. 121105.
10.
Marks
,
C. R.
,
Sondergaard
,
R.
,
Wolff
,
M.
, and
Anthony
,
R.
,
2013
, “
Experimental Comparison of DBD Plasma Actuators for Low Reynolds Number Separation Control
,”
ASME J. Turbomach.
,
135
(
1
), p.
011024
.
11.
Yang
,
L.
,
Li
,
J.
,
Cai
,
J.
,
Wang
,
G.
, and
Zhang
,
Z.
,
2016
, “
Lift Augmentation Based on Flap Deflection With Dielectric Barrier Discharge Plasma Flow Control Over Multi-Element Airfoils
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031401
.
12.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2012
, “
Plasma Control for a Maneuvering Low-Aspect-Ratio Wing at Low Reynolds Number
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121104
.
13.
Michelis
,
T.
, and
Kotsonis
,
M.
,
2015
, “
Flow Control on a Transport Truck Side Mirror Using Plasma Actuators
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111103
.
14.
Artana
,
G.
,
Desimone
,
G.
, and
Touchard
,
G.
,
1999
, “
Study of the Changes in the Flow Around a Cylinder Caused by Electroconvection
,” Proceedings of the 10th Electrostatics International Conference (ELECTROSTATICS), Cambridge, UK, March 28–31, pp.
147
152
.
15.
Artana
,
G.
,
Sosa
,
R.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2003
, “
Control of the Near-Wake Flow Around a Circular Cylinder With Electrohydrodynamic Actuators
,”
Exp. Fluids
,
35
(
6
), pp.
580
588
.
16.
MacLaughin
,
T. E.
,
Funska
,
M. D.
,
Vaeth
,
J. P.
,
Daulwalter
,
T. E.
,
Goode
,
J. R.
, and
Siegel
,
S. G.
,
2004
, “
Plasma-Based Actuators for Cylinder Wake Vortex Control
,”
AIAA Meeting
, Portland, Oregon.
17.
Jukes
,
T. N.
, and
Choi
,
K. S.
,
2009
, “
Flow Control Around a Circular Cylinder Using Pulsed Dielectric Barrier Discharge Surface Plasma
,”
Phys. Fluids
,
21
(8), p. 084103.
18.
Jukes
,
T. N.
, and
Choi
,
K.-S.
,
2009
, “
Long Lasting Modifications to Vortex Shedding Using a Short Plasma Excitation
,”
Phys. Rev. Lett.
,
102
(
25
), p.
254501
.
19.
D'Adamo
,
J.
,
Gonzalez
,
L. M.
,
Gronskis
,
A.
, and
Artana
,
G.
,
2012
, “
The Scenario of Two-Dimensional Instabilities of the Cylinder Wake Under EHD Forcing: A Linear Stability Analysis
,”
Fluid Dyn. Res.
,
44
(
5
), p. 055501.
20.
Benard
,
N.
, and
Moreau
,
E.
,
2013
, “
Response of a Circular Cylinder Wake to a Symmetric Actuation by Non-Thermal Plasma Discharges
,”
Exp. Fluids
,
54
, p. 1467.
21.
Funaoka
,
S.
,
Yamada
,
S.
,
Ichikawa
,
S.
, and
Ishikawa
,
H.
,
2014
, “
Interaction of Streamwise Vortex Pair Induced by Counter Type Plasma Jet With Flow Past a Circular Cylinder
,”
J. Fluid Sci. Technol.
,
9
(
3
), p.
JFST0050
.
22.
Roth
,
J. R.
,
2003
, “
Aerodynamic Flow Acceleration Using Paraelectric and Peristaltic Electrohydrodynamic Effects of a One Atmosphere Uniform Glow Discharge Plasma
,”
Phys. Plasmas
,
10
(
5
), pp.
2117
2126
.
23.
Berendt
,
A.
,
Podliński
,
J.
, and
Mizeraczyk
,
J.
,
2011
, “
Elongated DBD With Floating Interelectrodes for Actuators
,”
Eur. Phys. J. Appl. Phys.
,
55
(
1
), p.
13804
.
24.
Louste
,
C.
,
Artana
,
G.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2005
, “
Sliding Discharge in Air at Atmospheric Pressure: Electrical Properties
,”
J. Electrost.
,
63
(
6–10
), pp.
615
620
.
25.
Moreau
,
E.
,
Louste
,
C.
, and
Touchard
,
G.
,
2008
, “
Electric Wind Induced by Sliding Discharge in Air at Atmospheric Pressure
,”
J. Electrost.
,
66
(
1
), pp.
107
114
.
26.
Sosa
,
R.
,
D'Adamo
,
J.
, and
Artana
,
G.
,
2009
, “
Circular Cylinder Drag Reduction by Three-Electrode Plasma Actuators
,”
J. Phys.: Conf. Ser.
,
166
(
1
), p.
012015
.
27.
Benard
,
N.
, and
Moreau
,
E.
,
2009
, “
Electric Wind Produced by a Surface Plasma Discharge Energized by a Burst Modulated High Voltage
,”
29th International Conference on Phenomena in Ionized Gases
, Cancún, Mexico, July 12–17.
28.
Moreau
,
E.
,
Sosa
,
R.
, and
Artana
,
G.
,
2008
, “
Electric Wind Produced by Surface Plasma Actuators: A New Dielectric Barrier Discharge Based on a Three-Electrode Geometry
,”
J. Phys. D: Appl. Phys
,
41
(
11
), p. 115204.
29.
Burkardt
,
J.
,
Gunzburger
,
M.
, and
Lee
,
H. C.
,
2006
, “
POD and CVT-Based Reduced-Order Modeling of Navier-Stokes Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
(1–3), pp. 337–355.
30.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.
31.
Sosa
,
R.
,
Arnaud
,
E.
,
Memin
,
E.
, and
Artana
,
G.
,
2009
, “
Study of the Flow Induced by a Sliding Discharge
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
2
), pp.
305
311
.
32.
Pons
,
J.
,
Moreau
,
E.
, and
Touchard
,
G.
,
2005
, “
Asymmetric Surface Dielectric Barrier Discharge in Air at Atmospheric Pressure: Electrical Properties and Induced Airflow Characteristics
,”
J. Phys. D: Appl. Phys.
,
38
(
19
), pp.
3635
3642
.
33.
Kurtulus
,
D. F.
,
Scarano
,
F.
, and
David
,
L.
,
2007
, “
Unsteady Aerodynamic Forces Estimation on a Square Cylinder by TR-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
185
196
.
34.
Fujisawa
,
N.
,
Tanahashi
,
S.
, and
Srinivas
,
K.
,
2005
, “
Evaluation of Pressure Field and Fluid Forces on a Circular Cylinder With and Without Rotational Oscillation Using Velocity Data From PIV Measurement
,”
Meas. Sci. Technol.
,
16
(
4
), p.
989
.
35.
Unal
,
M.
,
Lin
,
J.
, and
Rockwell
,
D.
,
1997
, “
Force Prediction by PIV Imaging: A Momentum-Based Approach
,”
J. Fluids Struct.
,
11
(
8
), pp.
965
971
.
36.
Delany
,
N. K.
, and
Sorensen
,
N. E.
,
1953
, “
Low-Speed Drag of Cylinders of Various Shapes
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
3038
.
37.
Kriegseis
,
J.
,
Duchmann
,
A.
,
Tropea
,
C.
, and
Grundmann
,
S.
,
2013
, “
On the Classification of Dielectric Barrier Discharge Plasma Actuators: A Comprehensive Performance Evaluation Study
,”
J. Appl. Phys.
,
114
(
5
), p.
053301
.
38.
Wesfreid
,
J. E.
,
Goujon Durand
,
S.
, and
Zielinska
,
B.
,
1996
, “
Global Mode Behavior of the Streamwise Velocity in Wakes
,”
J. Phys. II
,
6
, pp.
1343
1357
.
39.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.
40.
Raspa
,
V.
,
Gaubert
,
C.
, and
Thiria
,
B.
,
2012
, “
Manipulating Thrust Wakes: A Parallel With Biomimetic Propulsion
,”
Europhys. Lett.
,
97
(
4
), p.
44008
.
41.
Raspa
,
V.
,
Godoy-Diana
,
R.
, and
Thiria
,
B.
,
2013
, “
Topology-Induced Effect in Biomimetic Propulsive Wakes
,”
J. Fluid Mech.
,
729
, pp.
377
387
.
42.
Griffin
,
O. M.
,
1995
, “
A Note on Bluff Body Vortex Formation
,”
J. Fluid Mech.
,
284
(
2
), pp.
217
224
.
43.
Thiria
,
B.
, and
Wesfreid
,
J. E.
,
2007
, “
Stability Properties of Forced Wakes
,”
J. Fluid Mech.
,
579
, pp.
137
161
.
44.
D'Adamo
,
J.
,
Godoy-Diana
,
R.
, and
Wesfreid
,
J. E.
,
2011
, “
Spatio-Temporal Spectral Analysis of a Forced Cylinder Wake
,”
Phys. Rev. E
,
84
(
5
), p. 056308.
45.
Kaiser
,
E.
,
Noack
,
B.
,
Cordier
,
L.
,
Spohn
,
A.
,
Segond
,
M.
,
Abel
,
M.
,
Daviller
,
G.
,
Osth
,
J.
,
Krajnović
,
S.
, and
Niven
,
R. K.
,
2014
, “
Cluster-Based Reduced-Order Modelling of a Mixing Layer
,”
J. Fluid Mech.
,
754
(
9
), pp.
365
414
.
46.
Steinhaus
,
H.
,
1956
, “
Sur la Division des Corps matÃl'riels en Parties
,”
Bull. lâĂŹAcadÃl'mie Pol. Sci
,
IV
(
12
), pp.
801
804
.
47.
Lloyd
,
S.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.
48.
Provansal
,
M.
,
Mathis
,
C.
, and
Boyer
,
L.
,
1987
, “
Bénard-von Kármán Instability: Transient and Forced Regimes
,”
J. Fluid Mech.
,
182
(
1
), pp.
1
22
.
49.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulence
,”
Atmospheric Turbulence and Radio Wave Propagation
, Nauka, Moscow, pp.
166
178
.
50.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
,
New York
.
51.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
Cambridge University Press
,
New York
.
52.
Williams
,
D. R.
,
Mansy
,
H.
, and
Amato
,
C.
,
1992
, “
The Response and Symmetry Properties of a Cylinder Wake Subjected to Localized Surface Excitation
,”
J. Fluid Mech.
,
234
, pp.
71
96
.
53.
Konstantinidis
,
E.
, and
Balabani
,
S.
,
2007
, “
Symmetric Vortex Shedding in the Near Wake of a Circular Cylinder Due to Streamwise Perturbations
,”
J. Fluids Struct.
,
23
(
7
), pp.
1047
1063
.
54.
Protas
,
B.
, and
Wesfreid
,
J. E.
,
2003
, “
On the Relation Between the Global Modes and the Spectra of Drag and Lift in Periodic Wake Flows
,”
C. R. Mec.
,
331
(
1
), pp.
49
54
.
You do not currently have access to this content.