Three-dimensional (3D) corner separation in a linear highly loaded compressor cascade is studied by using delayed detached-eddy simulation (DDES) method. This paper studies the flow mechanism of corner separation, including vortical structures and turbulence characteristics. The vortical structures are analyzed and the distributions of Reynolds stresses and turbulent anisotropy are also discussed in detail. The results show that there exist different kinds of vortical structures, such as horseshoe vortex, passage vortex, wake shedding vortex, and “corner vortex.” Before the corner separation forms, the passage vortex becomes the main secondary vortex and obviously enhances the corner separation. At approximate 35% chord position, the corner vortex begins to form, enlarges rapidly, and dominates the secondary flow in the cascade. The corner vortex is a compound vortex with its vortex core composed of multiple vortices. Streamwise normal Reynolds stress contributes greatest to the turbulence fluctuation in the corner region. The turbulence develops from two-dimensional (2D) turbulence in the near-wall region to one-component type turbulence in the corner region. The turbulence tends to be more anisotropic when the flow is close to the endwall within the corner separation region.

References

1.
Samson
,
A.
, and
Sarkar
,
S.
,
2016
, “
Effects of Free-Stream Turbulence on Transition of a Separated Boundary Layer Over the Leading-Edge of a Constant Thickness Airfoil
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021202
.
2.
Duquesne
,
P.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2016
, “
Investigation of Flow Separation in a Diffuser of a Bulb Turbine
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011102
.
3.
Poels
,
A.
,
Rudmin
,
D.
,
Benaissa
,
A.
, and
Poirel
,
D.
,
2015
, “
Localization of Flow Separation and Transition Over a Pitching NACA0012 Airfoil at Transitional Reynolds Number Using Hot-Films
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
124501
.
4.
Lv
,
Y. Z.
,
Li
,
Q. S.
, and
Li
,
S. B.
,
2015
, “
Modeling the Effect of Stability Bleed on Back-Pressure in Mixed-Compression Supersonic Inlets
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121101
.
5.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
6.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
7.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
8.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
9.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2007
, “
Interaction of Tip Clearance Flow and Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
129
(
4
), pp.
679
685
.
10.
Li
,
Y. H.
,
Wu
,
Y.
,
Zhou
,
M.
,
Su
,
C. B.
,
Zhang
,
X. W.
, and
Zhu
,
J. Q.
,
2010
, “
Control of the Corner Separation in a Compressor Cascade by Steady and Unsteady Plasma Aerodynamic Actuation
,”
Exp. Fluids
,
48
(
6
), pp.
1015
1023
.
11.
Hergt
,
A.
,
Meyer
,
R.
,
Liesner
,
K.
, and
Nicke
,
E.
,
2011
, “
A New Approach for Compressor Endwall Contouring
,”
ASME
Paper No. GT2011-45858.
12.
Cao
,
Z. Y.
,
Liu
,
B.
, and
Zhang
,
T.
,
2014
, “
Control of Separations in a Highly Loaded Diffusion Cascade by Tailored Boundary Layer Suction
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
8
), pp.
1363
1374
.
13.
Ji
,
L. C.
,
Tian
,
Y.
,
Li
,
W. W.
,
Yi
,
W. L.
, and
Wen
,
Q.
,
2012
, “
Numerical Studies on Improving Performance of Rotor-67 by Blended Blade and Endwall Technique
,”
ASME
Paper No. GT2012-68535.
14.
Zhong
,
J. J.
,
Han
,
J. A.
,
Liu
,
Y. M.
, and
Tian
,
F.
,
2008
, “
Numerical Simulation of Endwall Fence on the Secondary Flow in Compressor Cascade
,”
ASME
Paper No. GT2008-50888.
15.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressor by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
.
16.
Wang
,
Z. N.
, and
Yuan
,
X.
,
2013
, “
Unsteady Mechanism of Compressor Corner Separation Over a Range of Incidence Based on Hybrid LES/RANS
,”
ASME
Paper No. GT2013-95300.
17.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME
Paper No. GT2015-43975.
18.
Gao
,
F.
,
Ma
,
W.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L. P.
, and
Shao
,
L.
,
2015
, “
Large-Eddy Simulation of 3-D Corner Separation in a Linear Compressor Cascade
,”
Phys. Fluids
,
27
(
8
), p.
085105
.
19.
Liu
,
Y. W.
,
Yan
,
H.
,
Liu
,
Y. J.
,
Lu
,
L. P.
, and
Li
,
Q. S.
,
2016
, “
Numerical Study of Corner Separation in a Linear Compressor Cascade Using Various Turbulence Models
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
639
652
.
20.
Wu
,
Y. H.
,
Wu
,
J. F.
,
Zhang
,
G. G.
, and
Chu
,
W. L.
,
2014
, “
Experimental and Numerical Investigation of Flow Characteristics Near Casing in an Axial Flow Compressor Rotor at Stable and Stall Inception Conditions
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111106
.
21.
Liu
,
Y. W.
,
Yan
,
H.
,
Fang
,
L.
, and
Gao
,
F.
,
2016
, “
Modified k–ω Model Using Kinematic Vorticity for Corner Separation in Compressor Cascade
,”
Sci. China: Technol. Sci.
,
59
(
5
), pp.
795
806
.
22.
Ling
,
J.
,
Du
,
X.
,
Wang
,
S. T.
, and
Wang
,
Z. Q.
,
2013
, “
Numerical Investigation of Corner Separation on Compressor Cascade
,”
ASME
Paper No. GT2013-95194.
23.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2015
, “
Benefits of Nonaxisymmetric Endwall Contouring in a Compressor Cascade With a Tip Clearance
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051101
.
24.
Spalart
,
P. R.
,
2012
, “
Reflections on RANS Modelling
,”
Progress in Hybrid RANS-LES Modelling
,
Springer-Verlag
,
Berlin
, pp.
7
24
.
25.
Liu
,
Y. W.
,
Yu
,
X. J.
, and
Liu
,
B. J.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
26.
Spalart
,
P. R.
,
2014
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.
27.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings and on Hybrid RANS/LES Approach
,” 1st
AFOSR
International Conference on DNS and LES: Advances in DNS/LES
, Ruston, LA, Aug. 4–8, Vol.
1
, pp.
137
147
.
28.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. Kh.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
29.
Im
,
H. S.
, and
Zha
,
G. C.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111104
.
30.
Squires
,
K. D.
,
Forsythe
,
J. R.
, and
Spalart
,
P. R.
,
2005
, “
Detached-Eddy Simulation of the Separated Flow Over a Rounded-Corner Square
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
959
966
.
31.
Liu
,
Y. W.
,
Lu
,
L. P.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
32.
Liu
,
Y. W.
,
Yan
,
H.
, and
Lu
,
L. P.
,
2016
, “
Numerical Study of the Effect of Secondary Vortex on Three-Dimensional Corner Separation in a Compressor Cascade
,”
Int. J. Turbo Jet Eng.
,
33
(
1
), pp.
9
18
.
33.
Liu
,
Y. W.
,
Sun
,
J. J.
, and
Lu
,
L. P.
,
2014
, “
Corner Separation Control by Boundary Layer Suction Applied to a Highly Loaded Axial Compressor Cascade
,”
Energies
,
7
(
12
), pp.
7994
8007
.
34.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
35.
Spalart
,
P. R.
,
2001
, “
Young-Person's Guide to Detached-Eddy Simulation Grids
,” NASA Langley Research Center, Hampton, VA,
Technical Report No. NASA/CR-2001-211032
.
36.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
37.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
18
, pp.
261
282
.
38.
Lumley
,
J.
,
1978
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
39.
Simonsen
,
A. J.
, and
Krogstad
,
P. A.
,
2005
, “
Turbulent Stress Invariant Analysis: Clarification of Existing Terminology
,”
Phys. Fluids
,
17
(
8
), p.
088103
.
You do not currently have access to this content.