In this work, the suitability of pressure probes, commonly known as Irwin probes, to determine the local wall shear stress was evaluated for steady turbulent flow in rectangular ducts. Pressure measurements were conducted in the fully developed flow region of the duct and both the influence of duct aspect ratio (AR) (from 1:1.03 to 1:4.00) and Reynolds number (from 104 to 9 × 104) on the mean characteristics of the flow were analyzed. In addition, the sensitivity of the longitudinal and transversal placement of the Irwin probes was verified. To determine the most appropriate representation of the experimental data, three different characteristic lengths (l*) to describe Darcy's friction coefficient were investigated, namely: hydraulic diameter (Dh), square root of the cross section area (√A), and laminar equivalent diameter (DL). The comparison of the present experimental data for the range of tested Re numbers against the results for turbulent flow in smooth circular tubes indicates similar trends independently of the AR. The selection of the appropriate l* to represent the friction coefficient was found to be dependent on the AR of the duct, and the three tested scales present similar performance. However, the hydraulic diameter, being the commonly employed to compute turbulent flow in rectangular ducts, is the selected characteristic length scale to be used in the present study. A power function-based calibration equation is proposed for the Irwin probes, which is valid for the range of ARs and Reynolds numbers tested.

References

1.
Hartnett
,
J. P.
,
Koh
,
J. C. Y.
, and
McComas
,
S. T.
,
1962
, “
A Comparison of Predicted and Measured Friction Factors for Turbulent Flow Through Rectangular Ducts
,”
ASME J. Heat Transfer
,
84
(
1
), pp.
82
88
.
2.
Melling
,
A.
, and
Whitelaw
,
J. H.
,
1976
, “
Turbulent Flow in a Rectangular Duct
,”
J. Fluid Mech.
,
78
(
2
), pp.
289
315
.
3.
Rokni
,
M.
,
Olsson
,
C.
, and
Sundén
,
B.
,
1998
, “
Numerical and Experimental Investigation of Turbulent Flow in a Rectangular Duct
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
225
242
.
4.
Yao
,
J.
,
Zhao
,
Y.
, and
Fairweather
,
M.
,
2015
, “
Numerical Simulation of Turbulent Flow Through a Straight Square Duct
,”
Appl. Therm. Eng.
,
91
, pp.
800
811
.
5.
He
,
S.
, and
Gotts
,
J. A.
,
2005
, “
Calculation of Friction Coefficients for Noncircular Channels
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
1033
1038
.
6.
Bandopadhayay
,
P. C.
, and
Ambrose
,
C. W.
,
1980
, “
A Generalised Length Dimension for Non-Circular Ducts
,”
Lett. Heat Mass Transfer
,
7
(
5
), pp.
323
328
.
7.
Ahmed
,
S.
, and
Brundrett
,
E.
,
1971
, “
Turbulent Flow in Non-Circular Ducts—Part 1
,”
Int. J. Heat Mass Transfer
,
14
(
3
), pp.
365
375
.
8.
Jones
,
O. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.
9.
Duan
,
Z.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
,
2012
, “
Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
61201
.
10.
Nikuradse
,
J.
,
1926
,
Untersuchung Über die Geschwindigkeitsverteilung in Turbulenten Strömungen
,
VDI Forschungsh
,
Berlin
.
11.
Maeda
,
N.
,
Hirota
,
M.
, and
Fujita
,
H.
,
2005
, “
Turbulent Flow in a Rectangular Duct With a Smooth-to-Rough Step Change in Surface Roughness
,”
Energy
,
30
(
2–4
), pp.
129
148
.
12.
Rivas
,
G.
,
Garcia
,
E.
, and
Assato
,
M.
,
2008
, “
Turbulent Flow Simulations in a Square-Duct Using Non Linear and Reynolds Stress Models
,”
Anais do 14° Encontro de Iniciação Científica e Pós-Graduação do ITA-XIV ENCITA
, pp. 1–12.
13.
Uruba
,
V.
,
Hladík
,
O.
, and
Jonáš
,
P.
,
2011
, “
Dynamics of Secondary Flow in Rectangular Channel
,”
Colloquium FLUID DYNAMICS
,
Institute of Thermomechanics AS CR
,
Prague, Czech Republic
,
Oct. 19–21
, pp.
1
7
.http://www.it.cas.cz/files/DT2011/Uruba_F.pdf
14.
Vinuesa
,
R.
,
Schlatter
,
P.
, and
Nagib
,
H. M.
,
2015
, “
Characterization of the Secondary Flow in Turbulent Rectangular Ducts With Varying Aspect Ratio
,”
International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP-9
),
Melbourne, Australia
,
June 30–July 3
, pp.
3
8
.http://www.tsfp-conference.org/proceedings/2015/v3/8A-1.pdf
15.
Gessner
,
F. B.
, and
Jones
,
J. B.
,
1965
, “
On Some Aspects of Fully-Developed Turbulent Flow in Rectangular Channels
,”
J. Fluid Mech.
,
23
(
4
), pp.
689
713
.
16.
Pinelli
,
A.
,
Uhlmann
,
M.
,
Sekimoto
,
A.
, and
Kawahara
,
G.
,
2010
, “
Reynolds Number Dependence of Mean Flow Structure in Square Duct Turbulence
,”
J. Fluid Mech.
,
644
, pp.
107
122
.
17.
Rochlitz
,
H.
,
Scholz
,
P.
, and
Fuchs
,
T.
,
2015
, “
The Flow Field in a High Aspect Ratio Cooling Duct With and Without One Heated Wall
,”
Exp. Fluids
,
56
(
12
), pp.
1
13
.
18.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
, p. 817.
19.
Brundrett
,
E.
, and
Baines
,
W. D.
,
1964
, “
The Production and Diffusion of Vorticity in Duct Flow
,”
J. Fluid Mech.
,
19
(
3
), pp.
375
394
.
20.
Anselmet
,
F.
,
Ternat
,
F.
,
Amielh
,
M.
,
Boiron
,
O.
,
Boyer
,
P.
, and
Pietri
,
L.
,
2009
, “
Axial Development of the Mean Flow in the Entrance Region of Turbulent Pipe and Duct Flows
,”
C. R. Mec.
,
337
(
8
), pp.
573
584
.
21.
Irwin
,
H. P. A. H.
,
1981
, “
A Simple Omnidirectional Sensor for Wind-Tunnel Studies of Pedestrian-Level Winds
,”
J. Wind Eng. Ind. Aerodyn.
,
7
(
3
), pp.
219
239
.
22.
Ferreira
,
A. D.
,
Silva
,
M. C. G.
,
Viegas
,
D. X.
, and
Lopes
,
A. G.
,
1991
, “
Wind Tunnel Simulation of the Flow Around Two-Dimensional Hills
,”
J. Wind Eng. Ind. Aerodyn.
,
38
(
2–3
), pp.
109
122
.
23.
Monteiro
,
J. P.
, and
Viegas
,
D. X.
,
1996
, “
On the Use of Irwin and Preston Wall Shear Stress Probes in Turbulent Incompressible Flows With Pressure Gradients
,”
J. Wind Eng. Ind. Aerodyn.
,
64
(
1
), pp.
15
29
.
24.
Faria
,
R.
,
Ferreira
,
A. D.
,
Sismeiro
,
J. L.
,
Mendes
,
J. C. F.
, and
Sousa
,
A. C. M.
,
2011
, “
Wind Tunnel and Computational Study of the Stoss Slope Effect on the Aeolian Erosion of Transverse Sand Dunes
,”
Aeolian Res.
,
3
(
3
), pp.
303
314
.
25.
Ferreira
,
A. D.
,
Pinheiro
,
S. R.
, and
Francisco
,
S. C.
,
2013
, “
Experimental and Numerical Study on the Shear Velocity Distribution Along One or Two Dunes in Tandem
,”
Environ. Fluid Mech.
,
13
(
6
), pp.
557
570
.
26.
Zigrang
,
D. J.
, and
Sylvester
,
N. D.
,
1982
, “
Explicit Approximations to the Solution of Colebrook's Friction Factor Equation
,”
AIChE J.
,
28
(
3
), pp.
514
515
.
27.
Leutheusser
,
H. J.
,
1963
, “
Turbulent Flow in Rectangular Ducts
,”
ASCE J. Hydraul. Div.
,
89
(
HY3
), pp.
1
19
.
28.
Peysson
,
Y.
,
Ouriemi
,
M.
,
Medale
,
M.
,
Aussillous
,
P.
, and
Guazzelli
,
É.
,
2009
, “
Threshold for Sediment Erosion in Pipe Flow
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
597
600
.
29.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular References to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
30.
Tongpun
,
P.
,
Bumrungthaichaichan
,
E.
, and
Wattananusorn
,
S.
,
2014
, “
Investigation of Entrance Length in Circular and Noncircular Conduits by Computational Fluid Dynamics Simulation
,”
Songklanakarin J. Sci. Technol.
,
36
(
4
), pp.
471
475
.http://rdo.psu.ac.th/sjstweb/journal/36-4/36-4-13.pdf
31.
White
,
F.
,
1999
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
32.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.
33.
Nikuradse
,
J.
,
1932
,
Gesetzmäßigkeiten der Turbulenten Strömung in Glatten Rohren
, Forschungsheft 356, VDI-Verlag GmbH, Berlin.
34.
JCGM 200
,
2012
,
International Vocabulary of Metrology—Basic and General Concepts and Associated Terms
(VIM), 3rd ed., Bureau International des Poids et Mesures, Sèvres, France.
35.
Ferreira
,
A. D.
, and
Fino
,
M. R. M.
,
2012
, “
A Wind Tunnel Study of Wind Erosion and Profile Reshaping of Transverse Sand Piles in Tandem
,”
Geomorphology
,
139–140
, pp.
230
241
.
36.
Blasius, H.,
1913
, “
Das Aehnlichkeitsgesetz Bei Reibungsvorgängen in Flüssigkeiten
,” Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens, Springer, Berlin, pp. 1–41.
37.
Mirmanto
,
M.
,
2013
, “
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microchannels
,”
J. Mech. Eng. Autom.
,
3
, pp.
641
649
.https://www.researchgate.net/publication/278024701_Developing_Flow_Pressure_Drop_and_Friction_Factor_of_Water_in_Copper_Microchannels
38.
Sahar
,
A. M.
,
Özdemir
,
M. R.
,
Fayyadh
,
E. M.
,
Wissink
,
J.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2016
, “
Single Phase Flow Pressure Drop and Heat Transfer in Rectangular Metallic Microchannels
,”
Appl. Therm. Eng.
,
93
, pp.
1324
1336
.
39.
Marusic
,
I.
,
Monty
,
J. P.
,
Hultmark
,
M.
, and
Smits
,
A. J.
,
2013
, “
On the Logarithmic Region in Wall Turbulence
,”
J. Fluid Mech.
,
716
(
1976
), p.
R3
.
40.
Yang
,
S.-Q.
,
2009
, “
Mechanism for Initiating Secondary Currents in Channel Flows
,”
Can. J. Civ. Eng.
,
36
(
9
), pp.
1506
1516
.
41.
Georgiou
,
D. P.
, and
Milidonis
,
K. F.
,
2014
, “
The Static Pressure Field as a Driving Mechanism for the Streamwise Corner Flow in the Presence of an Inclined Transverse Plane
,”
Exp. Fluids
,
55
(
3
), p. 1694.
You do not currently have access to this content.