Vortex-induced vibration is a fluid instability where vortices due to secondary flows exert a periodic unsteady force on the elastic structure. Under certain circumstances, the shedding frequency can lock into the structure natural frequency and lead to limit cycle oscillations. These vibrations may cause material fatigue and are a common source of structural failure. This work uses a frequency domain, harmonic balance (HB) computational fluid dynamics (CFD) code to predict the natural shedding frequency and lock-in region of an airfoil at very high angles of attack. The numerical results are then successfully compared to experimental data from wind tunnel testings.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Williamson
, C.
, and Govardhan
, R.
, 2008
, “A Brief Review of Recent Results in Vortex-Induced Vibrations
,” J. Wind Eng. Ind. Aerodyn.
, 96
(6
), pp. 713
–735
.2.
Anagnostopoulos
, P.
, and Bearman
, P. W.
, 1992
, “Response Characteristics of a Vortex-Excited Cylinder at Low Reynolds Numbers
,” J. Fluids Struct.
, 6
(1
), pp. 39
–50
.3.
Karniadakis
, G.
, and Triantafyllou
, G.
, 1989
, “Frequency Selection and Asymptotic States in Laminar Wakes
,” J. Fluid Mech.
, 199
, pp. 441
–469
.4.
Dowell
, E. H.
, Hall
, K. C.
, Thomas
, J. P.
, Kielb
, R. E.
, Spiker
, M. A.
, and Denegri
, C. M.
, Jr., 2008
, “A New Solution Method for Unsteady Flows Around Oscillating Bluff Bodies
,” IUTAM
Symposium on Fluid-Structure Interaction in Ocean Engineering, Hamburg, Germany, Springer
, Vol. 8
, pp. 37
–44
.5.
Chen
, J.
, and Fang
, Y.-C.
, 1998
, “Lock-On of Vortex Shedding Due to Rotational Oscillations of a Flat Plate in a Uniform Stream
,” J. Fluids Struct.
, 12
(6
), pp. 779
–798
.6.
Yang
, Y.
, and Strganac
, T. W.
, 2013
, “Experiments of Vortex-Induced Torsional Oscillation of a Flat Plate in Cross Flow
,” AIAA J.
, 51
(6
), pp. 1522
–1526
.7.
Tang
, D.
, and Dowell
, E.
, 2013
, “Experimental Aerodynamic Response for an Oscillating Airfoil in Buffeting Flow
,” AIAA J.
, 52
(6
), pp. 1170
–1179
.8.
Bhat
, S.
, and Govardhan
, R.
, 2013
, “Stall Flutter of NACA0012 Airfoil at Low Reynolds Numbers
,” J. Fluids Struct.
, 41
, pp. 166
–174
.9.
Zhu
, B.
, Lei
, J.
, and Cao
, S.
, 2007
, “Numerical Simulation of Vortex Shedding and Lock-In Characteristics for a Thin Cambered Blade
,” ASME J. Fluids Eng.
, 129
(10
), pp. 1297
–1305
.10.
Young
, J.
, and Lai
, J. C. S.
, 2007
, “Vortex Lock-In Phenomenon in the Wake of a Plunging Airfoil
,” AIAA J.
, 45
(2
), pp. 485
–490
.11.
Ashraf
, M. A.
, Young
, J.
, and Lai
, J. C. S.
, 2012
, “Oscillation Frequency and Amplitude Effects on Plunging Airfoil Propulsion and Flow Periodicity
,” AIAA J.
, 50
(11
), pp. 2308
–2324
.12.
Young
, J.
, Ashraf
, M. A.
, Lai
, J. C. S.
, and Platzer
, M. F.
, 2013
, “Numerical Simulation of Fully Passive Flapping Foil Power Generation
,” AIAA J.
, 51
(11
), pp. 2727
–2739
.13.
Sanders
, A.
, 2005
, “Non-Synchronous Vibration (NSV) Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,” ASME J. Turbomach.
, 127
(2
), pp. 412
–421
.14.
Kielb
, R.
, Thomas
, J.
, Barter
, P.
, and Hall
, K.
, 2003
, “Blade Excitations by Aerodynamic Instabilities—A Compressor Blade Study
,” ASME
Paper No. GT2003-38634.15.
Drolet
, M.
, Vo
, H. D.
, and Mureithi
, N. W.
, 2012
, “Effect of Tip Clearance on the Prediction of Nonsynchronous Vibrations in Axial Compressors
,” ASME J. Turbomach.
, 135
(1
), p. 011023
.16.
Spiker
, M. A.
, 2008
, “Development of an Efficient Design Method for Non-Synchronous Vibration
,” Ph.D. thesis, Department of Mechanical Engineering and Materials Science
, Duke University, Durham, NC
.17.
Ota
, T.
, Okamoto
, Y.
, and Yoshikawa
, H.
, 1994
, “A Correction Formula for Wall Effects on Unsteady Forces of Two-Dimensional Bluff Bodies
,” ASME J. Fluids Eng.
, 116
(3
), pp. 414
–418
.18.
Chen
, J.
, and Fang
, Y.-C.
, 1996
, “Strouhal Number of Inclined Flat Plates
,” J. Wind Eng. Ind. Aerodyn.
, 61
(2–3
), pp. 99
–112
.19.
Hall
, K. C.
, Thomas
, J. P.
, and Clark
, W. S.
, 2002
, “Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,” AIAA J.
, 40
(5
), pp. 879
–886
.20.
Spiker
, M.
, Kielb
, R.
, Thomas
, J.
, and Hall
, K. C.
, 2009
, “Application of Enforced Motion to Study 2-D Cascade Lock-In Effect
,” AIAA
Paper No. 2009-892.21.
Zhou
, T.
, Dowell
, E.
, and Feng
, S.
, 2014
, “Numerical Study on Buffeting and Lock-In of an Airfoil at High Angle of Attack Including Correlation With Experiment
,” J. Fluids Struct.
(submitted).22.
Zhao
, M.
, Tong
, F.
, and Cheng
, L.
, 2012
, “Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents
,” ASME J. Fluids Eng.
, 134
(10
), p. 104501
.23.
Clark
, S.
, Besem
, F. M.
, Kielb
, R. E.
, and Thomas
, J. P.
, 2015
, “Developing a Reduced-Order Model of Non-Synchronous Vibration in Turbomachinery Using Proper Orthogonal Decomposition Methods
,” ASME J. Eng. Gas Turbines Power
, 137
(5
), p. 052501
.Copyright © 2016 by ASME
You do not currently have access to this content.