Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using smoothed particle hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.

References

1.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(3), pp.
375
389
.10.1093/mnras/181.3.375
2.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
(12), pp.
1013
1024
.10.1086/112164
3.
Liu
,
P. L. F.
,
Yeh
,
H.
, and
Costas
,
S.
, eds.,
2008
,
Advances in Coastal and Ocean Engineering: Advanced Numerical Models for Simulating Tsunami Waves and Runup
,
World Scientific Publishing
, Singapore.
4.
Cartwright
,
B.
,
Groenenboom
,
P. H. L.
, and
Mcguckin
,
D.
,
2004
, “
Examples of Ship Motions and Wash Predictions by Smoothed Particle Hydrodynamics
,”
9th Symposium on Practical Design of Ships and Other Floating Structures, Luebeck-Travemuende
,
Germany
, Sept. 12–17.
5.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2006
, “
A Multi-Phase SPH Method for Macroscopic and Mesoscopic Flows
,”
J. Comput. Phys.
,
213
(
2
), pp.
844
861
.10.1016/j.jcp.2005.09.001
6.
Grenier
,
N.
,
Touze
,
D. L.
,
Antuono
,
M.
, and
Colagrossi
,
A.
,
2008
, “
An Improved SPH Method for Multi-Phase Simulations
,”
8th International Conference on Hydrodynamics, ICHD 2008
,
Nantes, France
, Sep. 30–Oct. 3.
7.
Tartakovsky
,
A. M.
,
Ferris
,
K. F.
, and
Meakin
,
P.
,
2009
, “
Lagrangian Particle Model for Multiphase Flows
,”
Comput. Phys. Commun.
,
180
(
10
), pp.
1874
1881
.10.1016/j.cpc.2009.06.002
8.
Samareh
,
B.
,
Mostaghimi
,
J.
, and
Moreau
,
C.
,
2014
, “
Thermocapillary Migration of a Deformable Droplet
,”
Int. J. Heat Mass Transfer
,
73
, pp.
616
626
.10.1016/j.ijheatmasstransfer.2014.02.022
9.
Raessi
,
M.
,
Mostaghimi
,
J.
, and
Busssmann
,
M.
,
2010
, “
A Volume-of-Fluid Interfacial Flow Solver With Advected Normals
,”
Comput. Fluids
,
39
(
8
), pp.
1401
1410
.10.1016/j.compfluid.2010.04.010
10.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.10.1063/1.870005
11.
Tripathi
,
M. K.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2014
, “
Why a Falling Drop Does Not in General Behave Like a Rising Bubble
,”
Sci. Rep.
,
4
, p.
4771
.10.1038/srep04771
12.
Afkhami
,
S.
,
Zaleski
,
S.
, and
Bussmann
,
M.
,
2009
, “
A Mesh-Dependent Model for Applying Dynamic Contact Angles to VOF Simulations
,”
J. Comput. Phys.
,
228
(
15
), pp.
5370
5389
.10.1016/j.jcp.2009.04.027
13.
Šikalo
,
Š.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirli
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
062103
10.1063/1.1928828
14.
Cox
,
R. G.
,
1986
, “
The Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow
,”
J. Fluid Mech.
,
168
, pp.
169
194
.10.1017/S0022112086000332
15.
Kistler
,
S. F.
,
1993
, “
Hydrodynamics of Wetting
,”
Wettability
,
Taylor & Francis Publisher
, Oxford,
UK
, p.
311
.
16.
Karapetsas
,
G.
,
Sahu
,
K. C.
,
Sefiane
,
K.
, and
Matar
,
O. K.
,
2014
, “
Thermocapillary-Driven Motion of a Sessile Drop: Effect of Non-Monotonic Dependence of Surface Tension on Temperature
,”
Langmuir
,
30
(
15
), pp.
4310
4321
.10.1021/la5002682
17.
Sáenz
,
P. J.
,
Valluri
,
P.
,
Sefiane
,
K.
,
Karapetsas
,
G.
, and
Matar
,
O. K.
,
2014
, “
On Phase Change in Marangoni-Driven Flows and Its Effects on the Hydrothermal-Wave Instabilities
,”
Phys. Fluids
,
26
(
2
), p.
024114
.10.1063/1.4866770
18.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
)pp.
335
354
.10.1016/0021-9991(92)90240-Y
19.
Nugent
,
S.
, and
Posch
,
H. A.
,
2000
, “
Liquid Drops and Surface Tension With Smoothed Particle Applied Mechanics
,”
Phys. Rev. E
,
62
(
4
), pp.
4968
4975
.10.1103/PhysRevE.62.4968
20.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH Using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(
13
), pp.
5011
5021
.10.1016/j.jcp.2010.03.022
21.
Karapetsas
,
G.
,
Sahu
,
K. C.
, and
Matar
,
O. K.
,
2013
, “
Effect of Contact Line Dynamics on the Thermocapillary Motion of a Droplet on an Inclined Plate
,”
Langmuir
,
29
(
28
), pp.
8892
8906
.10.1021/la4014027
22.
Tartakovsky
,
A. M.
, and
Meakin
,
P.
,
2005
, “
A Smoothed Particle Hydrodynamics Model for Miscible Flow in Three-Dimensional Fractures and the Two-Dimensional Rayleigh–Taylor Instability
,”
J. Comput. Phys.
,
207
(
2
), pp.
610
624
.10.1016/j.jcp.2005.02.001
23.
Meleán
,
Y.
,
Sigalotti
,
L. D. G.
, and
Hasmy
,
A.
,
2004
, “
On the SPH Tensile Instability in Forming Viscous Liquid Drop
,”
Comput. Phys. Commun.
,
157
(
3
), pp.
191
200
.10.1016/j.comphy.2003.11.002
24.
Gray
,
J. P.
,
Monaghan
,
J. J.
, and
Swift
,
R. P.
,
2001
, “
SPH Elastic Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6641
6662
.10.1016/S0045-7825(01)00254-7
25.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
447
475
.10.1016/S0021-9991(03)00324-3
26.
Morris
,
J. P.
,
2000
, “
Simulating Surface Tension With Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
33
(
3
), pp.
333
353
.10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7
27.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2007
, “
An Incompressible Multi-Phase SPH Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
264
278
.10.1016/j.jcp.2007.07.013
28.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2009
, “
A Constant-Density Approach for Incompressible Multi-Phase SPH
,”
J. Comput. Phys.
,
228
(
6
), pp.
2082
2091
.10.1016/j.jcp.2008.11.027
29.
Hyman
,
J. M.
,
1984
, “
Numerical Methods for Tracking Interfaces
,”
Physica D
,
12
(
1–3
), pp.
396
407
.10.1016/0167-2789(84)90544-X
30.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2010
, “
A Conservative SPH Method for Surfactant Dynamics
,”
J. Comput. Phys.
,
229
(
5
), pp.
1909
1926
.10.1016/j.jcp.2009.11.015
31.
Das
,
A. K.
, and
Das
,
P. K.
,
2009
, “
Simulation of Drop Movement Over an Inclined Surface Using Smoothed Particle Hydrodynamics
,”
Langmuir
,
25
(
19
), pp.
11459
11466
.10.1021/la901172u
32.
Das
,
A. K.
, and
Das
,
P. K.
,
2011
, “
Incorporation of Diffuse Interface in Smoothed Particle Hydrodynamics: Implementation of the Scheme and Case Studies
,”
Int. J. Numer. Methods Fluids
,
67
(
6
), pp.
671
699
.10.1002/fld.2382
33.
Monaghan
,
J. J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
, pp.
323
346
.10.1146/annurev-fluid-120710-101220
34.
Das
,
A. K.
, and
Das
,
P. K.
,
2010
, “
Equilibrium Shape and Contact Angle of Sessile Drops of Different Volumes—Computation by SPH and Its Further Improvement by DI
,”
Chem. Eng. Sci.
,
65
(
13
), pp.
4027
4037
.10.1016/j.ces.2010.03.043
35.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc.
,
95
. pp.
65
87
.10.1098/rstl.1805.0005
36.
Farrokhpanah
,
A.
,
2012
, “
Applying Contact Angle to a Two-Dimensional Smoothed Particle Hydrodynamics (SPH) model on a Graphics Processing Unit (GPU) Platform
,” Master's thesis, University of Toronto, Toronto, ON, Canada.
37.
Mao
,
T.
,
Kuhn
,
D. C. S.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
Fluid Mech. Transp. Phenom.
,
43
(
9
), pp.
2169
2179
.10.1002/aic.690430903
You do not currently have access to this content.