In this paper, the high-order solution of a viscoelastic fluid is investigated using the discontinuous Galerkin (DG) method. The Oldroyd-B model is used to describe the viscoelastic behavior of the fluid flow. The high-order accuracy of the applied DG method is verified for a Newtonian benchmark problem with an exact solution. Next, the same algorithm is utilized to solve the viscoelastic flow by separating the stress tensor into the stress due to the Newtonian solvent and the stress due to the solved viscoelastic polymers. The high-order accuracy of the solution for viscoelastic flow is demonstrated by solving the planar Poiseuille flow. Then, the planar contraction problem is simulated as a benchmark for the viscoelastic flow. The obtained results are in good agreement with the results in the literature for both creeping and inertial flow when high-order polynomials were used even on coarse meshes.

References

1.
Šutalo
,
I. D.
,
Bui
,
A.
, and
Rudman
,
M.
,
2006
, “
The Flow of Non-Newtonian Fluids Down Inclines
,”
J. Non-Newtonian Fluid Mech.
,
136
(
1
), pp.
64
75
.10.1016/j.jnnfm.2006.02.011
2.
Berli
,
C. L. A.
, and
Olivares
,
M. L.
,
2008
, “
Electrokinetic Flow of Non-Newtonian Fluids in Microchannels
,”
J. Colloid Interface Sci.
,
320
(
2
), pp.
582
589
.10.1016/j.jcis.2007.12.032
3.
Perkins
,
T. T.
,
Smith
,
D. E.
, and
Chu
,
S.
,
1997
, “
Single Polymer Dynamics in an Elongational Flow
,”
Science
,
276
(
5321
), pp.
2016
2021
.10.1126/science.276.5321.2016
4.
Kim
,
H. J.
,
Kim
,
J. T.
,
Lee
,
K.
, and
Choi
,
H. J.
,
2000
, “
Mechanical Degradation of Dilute Polymer Solutions Under Turbulent Flow
,”
Polymer
,
41
(
21
), pp.
7611
7615
.10.1016/S0032-3861(00)00135-X
5.
Farid
,
M.
, and
Abdul Ghani
,
A. G.
,
2004
, “
A New Computational Technique for the Estimation of Sterilization Time in Canned Food
,”
Chem. Eng. Process
,
43
(
4
), pp.
523
531
.10.1016/j.cep.2003.08.007
6.
Crochet
,
M. J.
, and
Walters
,
K.
,
1983
, “
Numerical Methods in Non-Newtonian Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
241
260
.10.1146/annurev.fl.15.010183.001325
7.
Crochet
,
M. J.
,
Davies
,
A. R.
, and
Walters
,
K.
,
1984
,
Numerical Simulation of Non-Newtonian Flow
,
Elsevier
,
NY
.
8.
Owens
,
R. G.
, and
Phillips
,
T. N.
,
2002
,
Computational Rheology
,
Imperial College
,
London, UK
.10.1142/9781860949425
9.
Oldroyd
,
J.
,
1950
, “
On the Formulation of Rheological Equations of State
,”
Proc. R. Soc. London, Ser. A
,
200
(
1063
), pp.
523
541
.10.1098/rspa.1950.0035
10.
Aboubacar
,
M.
,
Matallah
,
H.
, and
Webster
,
M. F.
,
2002
, “
Highly Elastic Solutions for Oldroyd-B and Phan-Thien/Tanner Fluids With a Finite Volume/Element Method: Planar Contraction Flows
,”
J. Non-Newtonian Fluid Mech.
,
103
(
1
), pp.
65
103
.10.1016/S0377-0257(01)00164-1
11.
Phillips
,
T. N.
, and
Williams
,
A. J.
,
1999
, “
Viscoelastic Flow Through a Planar Contraction Using a Semi-Lagrangian Finite Volume Method
,”
J. Non-Newtonian Fluid Mech.
,
87
(
2–3
), pp.
215
246
.10.1016/S0377-0257(99)00065-8
12.
Phillips
,
T. N.
, and
Williams
,
A. J.
,
2002
, “
Comparison of Creeping and Inertial Flow of an Oldroyd-B Fluid Through Planar and Axisymmetric Contractions
,”
J. Non-Newtonian Fluid Mech.
,
108
(
1–3
), pp.
25
47
.10.1016/S0377-0257(02)00123-4
13.
Alves
,
M. A.
,
Oliveira
,
P. J.
, and
Pinho
,
F. T.
,
2003
, “
Benchmark Solutions for the Flow of Oldroyd-B and PTT Fluids in Planar Contractions
,”
J. Non-Newtonian Fluid Mech.
,
110
(
1
), pp.
45
75
.10.1016/S0377-0257(02)00191-X
14.
Zhang
,
X. H.
,
Ouyang
,
J.
, and
Zhang
,
L.
,
2010
, “
Characteristic Based Split (CBS) Mesh-Free Method Modeling for Viscoelastic Flow
,”
Eng. Anal. Boundary Elem.
,
34
(
2
), pp.
163
172
.10.1016/j.enganabound.2009.08.001
15.
Malaspinasa
,
O.
,
Fietier
,
N.
, and
Devillea
,
M.
,
2010
, “
Lattice Boltzmann Method for the Simulation of Viscoelastic Fluid Flows
,”
J. Non-Newtonian Fluid Mech.
,
165
(
23–24
), pp.
1637
1653
.10.1016/j.jnnfm.2010.09.001
16.
Baaijens
,
F. P. T.
,
1998
, “
Mixed Finite Element Methods for Viscoelastic Flow Analysis: A Review
,”
J. Non-Newtonian Fluid Mech.
,
79
(
2–3
), pp.
361
385
.10.1016/S0377-0257(98)00122-0
17.
Fiétier
,
N.
, and
Deville.
,
M. O.
,
2003
, “
Time-Dependent Algorithms for the Simulation of Viscoelastic Flows With Spectral Element Methods: Applications and Stability
,”
J. Comput. Phys.
,
186
(
1
), pp.
93
121
.10.1016/S0021-9991(03)00013-5
18.
Claus
,
S.
, and
Phillips
,
T. N.
,
2013
, “
Viscoelastic Flow Around a Confined Cylinder Using Spectral/hp Element Methods
,”
J. Non-Newtonian Fluid Mech.
,
200
, pp.
131
146
.10.1016/j.jnnfm.2013.03.004
19.
Arnold
,
D. N.
,
Brezzi
,
F.
,
Cockburn
,
B.
, and
Marini
,
L. D.
,
2001
, “
Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems
,”
SIAM J. Numer. Anal.
,
39
(
5
), pp.
1749
1779
.10.1137/S0036142901384162
20.
Riviere
,
B.
,
2008
,
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation
, SIAM-Frontiers in Applied Mathematics, Houston, TX.10.1137/1.9780898717440
21.
Cockburn
,
B.
, and
Shu
,
C. W.
,
2001
, “
Runge–Kutta Discontinuous Galerkin Methods for Convection Dominated Problems
,”
J. Sci. Comput.
,
16
(
3
), pp.
173
261
.10.1023/A:1012873910884
22.
Cockburn
,
B.
,
Kanschat
,
G.
,
Schotzau
,
D.
, and
Schwab
,
C.
,
2002
, “
The Local Discontinuous Galerkin Method for the Stokes System
,”
SIAM J. Numer. Anal.
,
40
(
1
), pp.
319
343
.10.1137/S0036142900380121
23.
Hansbo
,
P.
, and
Larson
,
M. G.
,
2002
, “
Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche's Method
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
17
), pp.
1895
1908
.10.1016/S0045-7825(01)00358-9
24.
Schotzau
,
D.
,
Schwab
,
C.
, and
Toselli
,
A.
,
2003
, “
Mixed hp-DGFEM for Incompressible Flow
,”
SIAM J. Numer. Anal.
,
40
(
6
), pp.
2171
2194
.10.1137/S0036142901399124
25.
Nguyen
,
N. C.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2010
, “
A Hybridizable Discontinuous Galerkin Method for Stokes Flow
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9–12
), pp.
582
597
.10.1016/j.cma.2009.10.007
26.
Cockburn
,
B.
,
Kanschat
,
G.
, and
Schotzau
,
G.
,
2005
, “
A Locally Conservative LDG Method for the Incompressible Navier–Stokes Equations
,”
Math. Comput.
,
74
(
251
), pp.
1067
1095
.10.1090/S0025-5718-04-01718-1
27.
Girault
,
V.
,
Riviere
,
B.
, and
Wheeler
,
M. F.
,
2005
, “
A Discontinuous Galerkin Method With Non-Overlapping Domain Decomposition for the Stokes and Navier–Stokes Problems
,”
Math. Comput.
,
74
, pp.
53
84
.10.1090/S0025-5718-04-01652-7
28.
Shahbazi
,
K.
,
Fischer
,
P. F.
, and
Ethier
,
C. R.
,
2007
, “
A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
222
(
1
), pp.
391
407
.10.1016/j.jcp.2006.07.029
29.
Nguyen
,
N. C.
,
Peraire
,
J.
, and
Cockburn
,
B.
,
2011
, “
An Implicit High-Order Hybridizable Discontinuous Galerkin Method the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
230
(
4
), pp.
1147
1170
.10.1016/j.jcp.2010.10.032
30.
Aboubacar
,
M.
, and
Webster
,
M. F.
,
2001
, “
A Cell-Vertex Finite Volume/Element Method on Triangles for Abrupt Contraction Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
,
98
(
2–3
), pp.
83
106
.10.1016/S0377-0257(00)00196-8
31.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Element Methods for Computational Fluid Dynamics
, 2nd ed.,
Oxford Science Publications
, Oxford, UK. 10.1093/acprof:oso/9780198528692.001.0001
32.
Mavriplis
,
D.
,
Nastase
,
C.
,
Shahbazi
,
K.
,
Wang
,
L.
, and
Burgess
,
N.
,
2009
, “
Progress in High-Order Discontinuous Galerkin Methods for Aerospace Applications
,”
AIAA
Paper No. 2009-0601.10.2514/6.2009-0601
33.
Girault
,
V.
, and
Wheeler
,
F.
,
2008
, “
Discontinuous Galerkin Methods
,”
Comput. Methods Appl. Sci.
,
16
, pp.
3
26
.10.1007/978-1-4020-8758-5
34.
Castillo
,
P.
,
2002
, “
Performance of Discontinuous Galerkin Methods for Elliptic PDEs
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
524
547
.10.1137/S1064827501388339
35.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
, “
High-Order Methods for Incompressible Fluid Flows
,”
Cambridge Monographs on Applied and Computational Mathematics
, Cambridge University Press, Cambridge, UK. 10.1017/CBO9780511546792
36.
Guermond
,
J. L.
,
Minev
,
P.
, and
Shen
,
J.
,
2006
, “
An Overview of Projection Methods for Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
6011
6045
.10.1016/j.cma.2005.10.010
37.
Karniadakis
,
G. E.
,
Israeli
,
M.
, and
Orszag
,
S. A.
,
1991
, “
High-Order Splitting Methods for Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
97
(
2
), pp.
414
443
.10.1016/0021-9991(91)90007-8
38.
Hesthaven
,
J. S.
, and
Warburton
,
T.
,
2008
,
Nodal Discontinuous Galerkin Methods—Algorithms, Analysis, and Applications, Springer
, Germany.
39.
Edussuriya
,
S. S.
,
Williams
,
A. J.
, and
Bailey
,
C.
,
2004
, “
A Cell-Centred Finite Volume Method for Modeling Viscoelastic Flow
,”
J. Non-Newtonian Fluid Mech.
,
117
(
1
), pp.
47
61
.10.1016/j.jnnfm.2003.12.001
40.
Szego
,
G.
,
1939
,
Orthogonal Polynomials
, Vol.
23
,
American Mathematical Society, Colloquium Publications
,
Providence, RI
.
41.
Shahbazi
,
K.
,
2005
, “
An Explicit Expression for the Penalty Parameter of the Interior Penalty Method
,”
J. Comput. Phys.
,
205
(
2
), pp.
401
407
.10.1016/j.jcp.2004.11.017
42.
Kovasznay
,
L. S. G.
,
1948
, “
Laminar Flow Behind a Two-Dimensional Grid
,”
Proc. Cambridge Philos. Soc.
,
44
(1), pp.
58
62
.10.1017/S0305004100023999
43.
Kim
,
J. M.
,
Kim
,
C.
,
Kim
,
J. H.
,
Chung
,
C.
,
Ahn
,
K. H.
, and
Lee
,
S. J.
,
2005
, “
High-Resolution Finite Element Simulation of 4:1 Planar Contraction Flow of Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
129
(
1
), pp.
23
37
.10.1016/j.jnnfm.2005.04.007
44.
Matallah
,
H.
,
Townsend
,
P.
, and
Webster
,
M. F.
,
1998
, “
Recovery and Stress-Sliptting Schemes for Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
,
75
(
2–3
), pp.
139
166
.10.1016/S0377-0257(97)00085-2
45.
Han
,
X. H.
,
2007
, “
Finite Element Modeling of Non-Isothermal Non-Newtonian Viscoelastic Flow in Mould Filling Process
,” Ph.D. thesis, Dalian University of Technology, Dalian City, Liaoning Province, China.
You do not currently have access to this content.