Passive scalar (temperature) mixing with different orifice geometries is considered at low Reynolds number. The kinetic energy dissipation rate shows that the three jets achieve a self-similar state quickly compared to a nozzle jet. Scalar dissipation evolves faster to the self-preserving state than kinetic energy dissipation and the asymptotic value of the normalized kinetic and scalar dissipation on the jet centerline can be predicted. Taylor and Corrsin microscales start evolving linearly with x/D as early as x/D = 10. Normalized spectra using these length scales continue to evolve for the circular jet and collapse faster for the six-lobe jet, when Rλ reach a constant value. The scaling factor and range for the velocity and the scalar suggest that the scaling region “similar to the inertial range” reaches equilibrium before small scales reach complete equilibrium. The use of multilobe jets promotes the development toward a complete self-preserving state for the scalar field.

References

1.
Duffet
,
J. C.
, and
Benaïssa
,
A.
,
2013
, “
Influence of Initial Conditions on the Evolution Towards Similarity of Passive Scalar in Turbulent Round Jets
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
834
843
.10.1016/j.expthermflusci.2012.09.029
2.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.10.1017/S0022112009005801
3.
Burattini
,
P.
,
Antonia
,
R. A.
, and
Danaila
,
L.
,
2005
, “
Similarity in the Far Field of a Turbulent Round Jet
,”
Phys. Fluids
,
17
(
2
), p.
025101
.10.1063/1.1833414
4.
George
,
W. K.
,
1998
, “
The Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,”
Advances in Turbulence
,
Springer, Berlin
, pp.
39
74
.
5.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.
6.
Lavoie
,
P.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
,
2007
, “
Effect of Initial Conditions in Decaying Turbulence Generated by Passive Grids
,”
J. Fluid Mech.
,
585
, pp.
395
420
.10.1017/S0022112007006763
7.
Burattini
,
P.
, and
Djenidi
,
L.
,
2004
, “
Velocity and Passive Scalar Characteristics in a Round Jet With Grids at the Nozzle Exit Flow
,”
Turbul. Combust.
,
72
(
2–4
), pp.
199
218
.10.1023/B:APPL.0000044412.79451.64
8.
Gutmark
,
E. J.
, and
Grinstein
,
F. F.
,
1999
, “
Flow Control With Noncircular Jets
,”
J. Fluid Mech.
,
31
, pp.
239
272
.10.1146/annurev.fluid.31.1.239
9.
Hu
,
H.
,
Saga
,
T.
,
Kobayashi
,
T.
, and
Taniguchi
,
N.
,
2002
, “
Mixing Process in a Lobed Jet Flow
,”
AIAA J.
,
40
(
7
), pp.
1339
1345
.10.2514/2.1793
10.
Mi
,
J.
,
Kalt
,
P.
, and
Nathan
,
G. J.
,
2010
, “
On Turbulent Jets Issuing From Notched-Rectangular and Circular Orifice Plates
,”
Flow Turbul. Combust.
,
84
(
4
), pp.
565
582
.10.1007/s10494-009-9239-6
11.
Thiesset
,
F.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
,
2014
, “
Consequences of Self-Preservation on the Axis of a Turbulent Round Jet
,”
J. Fluid Mech.
,
748
.10.1017/jfm.2014.235
12.
Darisse
,
A.
,
2014
, “
Etude de la Turbulence et du Scalaire Passif Dans un Jet Rond Libre Légèrement Chauffé
,” Ph.D. dissertation,
Laval University
,
Quebec, Canada
.
13.
Quinn
,
W. R.
,
1992
, “
Streamwise Evolution of a Square Jet Cross Section
,”
AIAA J.
,
30
(
12
), pp.
2852
2857
.10.2514/3.48973
14.
Paranthoen
,
P.
, and
Lecordier
,
J. C.
,
1996
, “
Mesures de Température dans les Écoulements Turbulents
,”
Rev. Gén. Therm.
,
35
, pp.
283
308
.10.1016/S0035-3159(99)80073-7
15.
Lemay
,
J.
,
Benaïssa
,
A.
, and
Antonia
,
R. A.
,
2003
, “
Correction of Cold Wire Response for Mean Temperature Dissipation Rate Measurements
,”
Exp. Therm. Fluid Sci.
,
27
(
2
), pp.
133
143
.10.1016/S0894-1777(02)00257-1
16.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry, Principles and Signal Analysis
,
Oxford University Press
,
New York
.
17.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium Part I—Air Jet
,”
J. Fluid Mech.
,
246
, pp.
197
223
.10.1017/S0022112093000096
18.
Hussein
,
J. H.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number Momentum-Conserving, Axisymmetric Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.10.1017/S002211209400323X
19.
Chua
,
L. P.
, and
Antonia
,
R. A.
,
1990
, “
Turbulent Prandtl Number in a Circular Jet
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
331
339
.10.1016/0017-9310(90)90102-Z
20.
Darisse
,
A.
,
Lemay
,
J.
, and
Benaissa
,
A.
,
2013
, “
LDV Measurements of Well Converged Third Order Moments in the Far Field of Free Turbulent Round Jet
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
825
833
.10.1016/j.expthermflusci.2012.09.028
21.
Fellouah
,
H.
,
Ball
,
C. G.
, and
Pollard
,
A.
,
2009
, “
Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3943
3954
.10.1016/j.ijheatmasstransfer.2009.03.029
22.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
,
2013
, “
Reynolds Number Influence on Statistical Behaviors of Turbulence in a Circular Free Jet
,”
Phys. Fluids
,
25
(
7
), p.
075101
.10.1063/1.4811403
23.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk. SSSR
,
30
, pp.
301
305
.10.1098/rspa.1991.0075
24.
Kolmogorov
,
A. N.
,
1941
, “
Dissipation of Energy in Locally Isotropic Turbulence
,”
Dokl. Akad. Nauk. SSSR
,
32
, pp.
16
18
.
25.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1969
,
Mechanics
, 2nd ed.,
Pergamon Press
,
Moscow
.
26.
Dimotakis
,
P.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
, pp.
69
98
.10.1017/S0022112099007946
27.
Benaïssa
,
A.
, and
Gisselbrecht
,
T.
,
2013
, “
Self-Similar Evolution of Velocity and Temperature Small Scales in a Turbulent Round Jet
,”
Eur. J. Mech. B/Fluids
,
42
, pp.
169
175
.10.1016/j.euromechflu.2013.06.005
28.
Mydlarsky
,
L.
, and
Warhaft
,
Z.
,
1996
, “
On the Onset of High-Reynolds-Number Grid-Generated Wind Tunnel Turbulence
,”
J. Fluid Mech.
,
320
, pp.
331
368
.10.1017/S0022112096007562
29.
Mejìa
,
J. M.
,
Sadiki
,
A.
,
Molina
,
A.
,
Chejne
,
F.
, and
Pantangi
,
P.
,
2015
, “
Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031301
.10.1115/1.4029224
You do not currently have access to this content.