A two-dimensional numerical simulation of flow in patterned microchannel with alternate layers of different sizes of hydrophilic and hydrophobic surfaces at the bottom wall is conducted here. The effect of specified contact angle and working fluid (de-ionized (DI) water and ethanol) on capillary phenomena is observed here. The volume of fluid method is used for simulating the free surface flow in the microchannel. Meniscus profiles with varying amplitude and shapes are obtained under the different specified surface conditions. Nonsymmetric meniscus profiles are obtained by changing the contact angles of the hydrophilic and hydrophobic surfaces. A meniscus stretching parameter is defined here and its relation to the capillary phenomena in the microchannel is discussed. Flow variation increases as the fluid traverses alternately between the hydrophilic and hydrophobic regions. The pattern size and the surface tension of the fluid are found to have significant influence on the capillary phenomena in the patterned microchannel. Smaller pattern size produces enhanced capillary effect with DI water, whereas no appreciable gain is observed for ethanol. The magnitude of maximum velocity along the channel height varies considerably with the pattern size and the contact angle. Also, the rms velocity is found to be higher for smaller alternate patterned microchannel. The meniscus average velocity difference at the top and bottom walls increases for a dimensionless pattern size of 0.6 and thereafter it decreases with the increase in pattern size in the case of DI water with hydrophilic-hydrophobic pattern. Using such patterned microchannel, it is possible to manipulate and optimize fluid flow in microfluidic devices, which require enhanced mixing for performing biological reactions.

1.
Madou
,
M.
, 2002,
Fundamentals of Microfabrication
,
CRC
,
New York
.
2.
Deval
,
J.
,
Umali
,
T. A.
,
Lan
,
E. H.
,
Dunn
,
B.
, and
Ho
,
C. M.
, 2004, “
Reconfigurable Hydrophobic/Hydrophilic Surfaces in Microelectromechanical Systems (MEMS)
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
91
95
.
3.
Zhao
,
B.
,
Jeffrey
,
M. S.
, and
Beebe
,
D. J.
, 2001, “
Surface-Directed Liquid Flow Inside Microchannels
,”
Science
0036-8075,
291
, pp.
1023
1026
.
4.
Kim
,
D. S.
,
Lee
,
K. C.
,
Kwon
,
T. H.
, and
Lee
,
S. S.
, 2002, “
Microchannel Filling Flow Considering Surface Tension Effect
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
236
246
.
5.
Yang
,
L. J.
,
Yao
,
T. J.
, and
Tai
,
Y. C.
, 2004, “
The Marching Velocity of the Capillary Meniscus in a Microchannel
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
220
225
.
6.
Salamon
,
T.
,
Lee
,
W.
,
Krupenkin
,
M.
,
Hodes
,
M.
, and
Kolodner
,
P.
, 2005, “
Numerical Simulation of Fluid Flow in Microchannels With Superhydrophobic Walls
,”
International Mechanical Engineering Conference and Exposition
, Paper No. 82641.
7.
Byun
,
D.
,
Budiono
,
Yang
,
J. H.
,
Lee
,
C.
, and
Lim
,
K. W.
, 2005, “
Numerical Visualization of Flow Instability in Microchannel Considering Surface Wettability
,”
Second International Conference on Fuzzy Systems and Knowledge Discovery
, Paper No. LNAI 3613.
8.
Dalton
,
T.
,
Eason
,
C.
,
Enright
,
R.
,
Hodes
,
M.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
, 2006, “
Challenges in Using Nano Textured Surfaces to Reduce Pressure Drop Through Microchannels
,”
Seventh International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems
, pp.
1
3
.
9.
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1998, “
Computational Modeling of Microfluid Devices With Free Surface Liquid Handling
,”
First International Conference on Modeling and Simulation of Microsystems
, pp.
498
505
.
10.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
11.
Kothe
,
D. B.
,
Rider
,
W. J.
,
Mosso
,
S. J.
, and
Brock
,
J. S.
, 1996, “
Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions
,” AIAA Paper No. 96-0859.
12.
Saha
,
A. A.
,
Mitra
,
S. K.
,
Tweedie
,
M.
,
Roy
,
S.
, and
McLaughlin
,
J.
, 2008, “
Experimental and Numerical Investigation of Capillary Flow in SU8 and PDMS Microchannels With Integrated Pillars
,”
Microfluid. Nanofluid.
1613-4982
13.
Huang
,
W.
,
Liu
,
Q.
, and
Li
,
Y.
, 2006, “
Capillary Filling Flows Inside Patterned-Surface Microchannels
,”
Chem. Eng. Technol.
0930-7516,
29
, pp.
716
723
.
14.
Nayak
,
K.
,
Kulkarni
,
P. D.
,
Deepu
,
A.
,
Sitaraman
,
V. R.
,
Punidha
,
S.
,
Saha
,
A. A.
,
Ravikanth
,
M.
,
Mitra
,
S. K.
,
Mukherji
,
S.
, and
Rao
,
V. R.
, 2007, “
Patterned Microfluidic Channels Using Self-Assembled Hydroxy-Phenyl Porphyrin Monolayer
,”
Seventh IEEE International Conference on Nanotechnology
, Paper No. 404, pp.
238
240
.
15.
Probstein
,
R. F.
, 1994,
Physicochemical Hydrodynamics
,
Wiley
,
New York
.
16.
Patankar
,
S.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
17.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
18.
Rosengarten
,
G.
,
Harvie
,
D. J. E.
, and
White
,
J. C.
, 2006, “
Contact Angle Effects on Microdroplet Deformation Using CFD
,”
Appl. Math. Model.
0307-904X,
30
, pp.
1033
1042
.
19.
Washburn
,
E. W.
, 1921, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
0096-8250,
17
, pp.
273
299
.
21.
Ralston
,
J.
,
Popescu
,
M.
, and
Sedev
,
R.
, 2008, “
Dynamics of Wetting from an Experimental Point of View
,”
Annu. Rev. Mater. Res.
1531-7331,
38
, pp.
23
43
.
22.
Dussan
,
E. B.
, 1979, “
On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Angles
,”
Annu. Rev. Fluid Mech.
0066-4189,
11
, pp.
371
400
.
23.
de Gennes
,
P. G.
, 1985, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
0034-6861,
57
, pp.
827
890
.
24.
Blake
,
T. D.
, 2006, “
The Physics of Moving Wetting Lines
,”
J. Colloid Interface Sci.
0021-9797,
299
, pp.
1
13
.
25.
ESI CFD Inc.
, 2007, CFD-ACE+ Software Manuals, V2007.2.
26.
Stange
,
M.
,
Dreyer
,
M. E.
, and
Rath
,
H. J.
, 2003, “
Capillary Driven Flow in Circular Cylindrical Tubes
,”
Phys. Fluids
1070-6631,
15
, pp.
2587
2601
.
27.
Dreyer
,
M. E.
,
Delgado
,
A.
, and
Rath
,
H. J.
, 1994, “
Capillary Rise of Liquid Between Parallel Plates Under Microgravity
,”
J. Colloid Interface Sci.
0021-9797,
163
, pp.
158
168
.
28.
Raessi
,
M.
,
Mostaghimi
,
J.
, and
Bussmann
,
M.
, 2007, “
Advecting Normal Vectors: A New Method for Calculating Interface Normals and Curvatures When Modeling Two Phase Flows
,”
J. Comput. Phys.
0021-9991,
226
, pp.
774
797
.
29.
Trutschel
,
R.
, and
Schellenberger
,
U.
, 1998, “
Dynamic Simulation of Free Surfaces in Capillaries With the Finite Element Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
26
, pp.
485
495
.
30.
Yang
,
A. S.
, 2008, “
Investigation of Liquid-Gas Interfacial Shapes in Reduced Gravitational Environments
,”
Int. J. Mech. Sci.
0020-7403,
50
, pp.
1304
1315
.
You do not currently have access to this content.