This paper presents the conceptual design of the flexible asymmetric shock tube (FAST) setup for the experimental verification of the existence of nonclassical rarefaction shock waves in molecularly complex dense vapors. The FAST setup is a Ludwieg tube facility composed of a charge tube that is separated from the discharge vessel by a fast-opening valve. A nozzle is interposed between the valve and the charge tube to prevent disturbances from the discharge vessel to propagate into the tube. The speed of the rarefaction wave generated in the tube as the valve opens is measured by means of high-resolution pressure transducers. The provisional working fluid is siloxane D6 (dodecamethylcyclohexasiloxane, C12H36O6Si6). Numerical simulations of the FAST experiment are presented using nonideal thermodynamic models to support the preliminary design. The uncertainties related to the thermodynamic model of the fluid are assessed using a state-of-the-art thermodynamic model of fluid D6. The preliminary design is confirmed to be feasible and construction requirements are found to be well within technological limits.

1.
Colonna
,
P.
, 2004, “
Experimental and Numerical Investigation of Dense Gas Fluid Dynamics and BZT Fluids Exploitation for Energy Conversion Applications
,” NWO-VIDI Project Proposal, Energy Technology Section, Delft University of Technology, February.
2.
Colonna
,
P.
, and
Silva
,
P.
, 2003, “
Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
414
427
.
3.
Colonna
,
P.
,
Nannan
,
N. R.
,
Guardone
,
A.
, and
Lemmon
,
E. W.
, 2006, “
Multi-Parameter Equations of State for Selected Siloxanes
,”
Fluid Phase Equilib.
0378-3812,
244
, pp.
193
211
.
4.
Colonna
,
P.
, and
Rebay
,
S.
, 2004, “
Numerical Simulation of Dense Gas Flows on Unstructured Grids With an Implicit High Resolution Upwind Euler Solver
,”
Int. J. Numer. Methods Fluids
0271-2091,
46
, pp.
735
765
.
5.
Colonna
,
P.
,
Rebay
,
S.
,
Harinck
,
J.
, and
Guardone
,
A.
, 2006, “
Real-Gas Effects in ORC Turbine Flow Simulations: Influence of Thermodynamic Models on Flow Fields and Performance Parameters
,”
ECCOMAS CFD 2006 Conference, Egmond aan Zee
.
6.
Zamfirescu
,
C.
,
Guardone
,
A.
, and
Colonna
,
P.
, 2006, “
Preliminary Design of the FAST Dense Gas Ludwieg Tube
,”
Ninth, AIAA∕ASME Joint Thermophysics and Heat Transfer Conference
,
San Francisco
,
CA
.
7.
Zamfirescu
,
C.
,
Guardone
,
A.
, and
Colonna
,
P.
, 1986, “
Numerical Simulation of the FAST Dense Gas Ludwieg Tube Experiment
,”
ECCOMAS CFD 2006 Conference
, Egmond aan Zee.
8.
Stryjek
,
R.
, and
Vera
,
J. H.
, 1986, “
PRSV: An Improved Peng–Robinson Equation of State for Pure Compounds and Mixtures
,”
Can. J. Chem. Eng.
0008-4034,
64
, pp.
323
333
.
9.
Thompson
,
P. A.
, 1971, “
A Fundamental Derivative in Gas Dynamics
,”
Phys. Fluids
0031-9171,
14
(
9
), pp.
1843
1849
.
10.
Thompson
,
P. A.
, and
Lambrakis
,
K. C.
, 1973, “
Negative Shock Waves
,”
J. Fluid Mech.
0022-1120,
60
, pp.
187
208
.
11.
Cramer
,
M. S.
, 1989, “
Negative Nonlinearity in Selected Fluorocarbons
,”
Phys. Fluids A
0899-8213,
1
(
11
), pp.
1894
1897
.
12.
Guardone
,
A.
, and
Argrow
,
B. M.
, 2005, “
Nonclassical Gasdynamic Region of Selected Fluorocarbons
,”
Phys. Fluids
1070-6631,
17
(
11
), pp.
116102
-1-
17
.
13.
Colonna
,
P.
,
Guardone
,
A.
, and
Nannan
,
N. R.
, 2007, “
Siloxanes: A New Class of Candidate Bethe–Zel’dovich–Thompson Fluids
,”
Phys. Fluids
1070-6631,
19
, pp.
086102
-1-
12
.
14.
Hayes
,
W. D.
, 1960, “
The Basic Theory of Gasdynamic Discontinuities
,”
Fundamentals of Gasdynamics (High Speed Aerodynamics and Jet Propulsion)
,
H. W.
Emmons
, ed.,
Princeton University Press
,
Princeton, NJ
, Vol.
3
, pp.
416
481
.
15.
Bethe
,
H. A.
, 1942, “
The Theory of Shock Waves for an Arbitrary Equation of State
,” Office of Scientific Research and Development, Technical Report 545.
16.
Zel’dovich
,
Y. B.
, 1946, “
On the Possibility of Rarefaction Shock Waves
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
4
, pp.
363
364
.
17.
Menikoff
,
R.
, and
Plohr
,
B. J.
, 1989, “
The Riemann Problem for Fluid Flow of Real Material
,”
Rev. Mod. Phys.
0034-6861,
61
(
1
), pp.
75
130
.
18.
Thompson
,
P. A.
, and
Kim
,
Y.
, 1983, “
Direct Observation of Shock Splitting in a Vapor-Liquid System
,”
Phys. Fluids
0031-9171,
26
(
11
), pp.
3211
3215
.
19.
Thompson
,
P. A.
,
Carofano
,
G. A.
, and
Kim
,
Y.
, 1986, “
Shock Waves and Phase Changes in a Large Heat Capacity Fluid Emerging From a Tube
,”
J. Fluid Mech.
0022-1120,
166
, pp.
57
96
.
20.
Gulen
,
S. C.
,
Thompson
,
P. A.
, and
Cho
,
H. A.
, 1989, “
Rarefaction and Liquefaction Shock Waves in Regular and Retrograde Fluids With Near-Critical End States
,”
Adiabatic Waves in Liquid-Vapor Systems
, Springer-Verlag, pp.
281
290
.
21.
Simões-Moreira
,
J. R.
, and
Shepherd
,
J. E.
, 1999, “
Evaporation Waves in Superheated Dodecane
,”
J. Fluid Mech.
0022-1120,
382
, pp.
63
86
.
22.
Ivanov
,
A. G.
, and
Novikov
,
S. A.
, 1961, “
Rarefaction Shock Waves in Iron and Steel
,”
Zh. Eksp. Teor. Fiz.
0044-4510,
40
(
6
), pp.
1880
1882
.
23.
Borisov
,
A. A.
,
Borisov
,
Al. A.
,
Kutateladze
,
S. S.
, and
Nakaryakov
,
V. E.
, 1983, “
Rarefaction Shock Waves Near the Critic Liquid-Vapour Point
,”
J. Fluid Mech.
0022-1120,
126
, pp.
59
73
.
24.
Cramer
,
M. S.
, and
Sen
,
R.
, 1986, “
Shock Formation in Fluids Having Embedded Regions of Negative Nonlinearity
,”
Phys. Fluids
0031-9171,
29
, pp.
2181
2191
.
25.
Kutateladze
,
S. S.
,
Nakoryakov
,
V. E.
, and
Borisov
,
A. A.
, 1987, “
Rarefaction Waves in Liquid and Gas-Liquid Media
,”
Annu. Rev. Fluid Mech.
0066-4189,
19
, pp.
577
600
.
26.
Fergason
,
S. H.
,
Ho
,
T. L.
,
Argrow
,
B. M.
, and
Emanuel
,
G.
, 2001, “
Theory for Producing a Single-Phase Rarefaction Shock Wave in a Shock Tube
,”
J. Fluid Mech.
0022-1120,
445
, pp.
37
54
.
27.
Fergason
,
S. H.
,
Guardone
,
A.
, and
Argrow
,
B. M.
, 2003, “
Construction and Validation of a Dense Gas Shock Tube
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
326
333
.
28.
Zamfirescu
,
C.
,
Colonna
,
P.
, and
Guardone
,
A.
, 2007, “
Maximum Wave Mach Number of Rarefaction Shocks in Selected BZT Fluids
,”
Proceedings of the Fifth International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2007)
,
Sun City
,
South Africa
, Jul. Paper No. ZC1, pp.
1
6
.
29.
Chung
,
T.-H.
,
Ajlan
,
M.
,
Lee
,
L. L.
, and
Starling
,
K. E.
, 1988, “
Generalized Multiparameter Correlation for Non-Polar and Polar Fluid Transport Properties
,”
Ind. Eng. Chem. Res.
0888-5885,
27
, pp.
671
679
.
30.
Mirels
,
H.
, 1955, “
Laminar Boundary Layer Behind Shock Advancing Into Stationary Fluid
,” National Advisory Committee for Aeronautics, Technical Note TN 3401.
31.
Thompson
,
P. A.
, 1988,
Compressible Fluid Dynamics
,
McGraw-Hill
,
New York
.
32.
Cramer
,
M. S.
,
Monaco
,
J. F.
, and
Fabeny
,
B. M.
, 1994, “
Fanno Processes in Dense Gases
,”
Phys. Fluids
1070-6631,
6
(
2
), pp.
674
683
.
33.
Span
,
R.
, 2000,
Multiparameter Equations of State
,
Springer-Verlag
,
Berlin
.
34.
Colonna
,
P.
,
Nannan
,
N. R.
, and
Guardone
,
A.
, 2008, “
Multiparameter Equations of State for Siloxanes: [(CH3)3‐Si‐O1∕2]2‐[O‐Si‐(CH3)2]i=1…3, and [O‐Si‐(CH3)2]6
,”
Fluid Phase Equilib.
0378-3812,
263
(
2
), pp.
115
130
.
35.
Guardone
,
A.
,
Vigevano
,
L.
, and
Argrow
,
B. M.
, 2004, “
Assessment of Thermodynamic Models for Dense Gas Dynamics
,”
Phys. Fluids
1070-6631,
16
(
11
), pp.
3878
3887
.
36.
Nannan
,
N. R.
,
Colonna
,
P.
,
Tracy
,
C. M.
,
Rowley
,
R. L.
, and
Hurly
,
J. J.
, 2007, “
Ideal-Gas Heat Capacities of Dimethylsiloxanes From Speed-of-Sound Measurements and Ab Initio Calculations
,”
Fluid Phase Equilib.
0378-3812,
257
(
1
), pp.
102
113
.
You do not currently have access to this content.