Microscale gas flow through channels with a right-angled bend has been numerically analyzed to study the effect of the fillet radius on flow characteristics. The flow is assumed to be incompressible, laminar, and hydrodynamically developing. The fillet radius has been varied from zero, representing a sharp corner, to 0.6 times the height of the channel. The Knudsen number has been varied from zero, representing no-slip at the boundary, to 0.1, which is the limiting case for the slip-flow regime. A low Reynolds number of value 1 has been considered in the present study, which makes the flow to be within the incompressible slip-flow regime. The flow characteristics in terms of velocity profiles, velocity vectors, and the pressure ratio between the inlet and outlet of the channel have been presented for several cases. Results show that for the case of the fillet radius equal to zero, the flow separation occurs after the bend and due to this, the exit velocity profile changes significantly. The highest pressure ratio between the inlet and the outlet is required to maintain a specific mass flow rate for this case. The cases with a nonzero fillet radius exhibit exit velocity profiles identical to that of a straight channel. The pressure ratio decreases when the fillet radius and the Knudsen number are increased.

1.
Keenan
,
J. H.
, and
Neumann
,
E. P.
, 1946, “
Measurements of Friction in a Pipe for Subsonic and Supersonic Flow of Air
,”
ASME J. Appl. Mech.
0021-8936,
13
(
2
), pp.
91
100
.
2.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
, 1961,
Flow of Rarefied Gases
,
Princeton University Press
,
Princeton, NJ
.
3.
Ebert
,
W. A.
, and
Sparrow
,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
1018
1024
.
4.
Sreekanth
,
A. K.
, 1968, “
Slip Flow Through Long Circular Tubes
,”
Rarefied Gas Dynamics
,
L.
Trilling
and
H. Y.
Wachman
, eds.,
Academic
,
New York
.
5.
Prudhomme
,
R. K.
,
Chapman
,
T. W.
, and
Bowen
,
J. R.
, 1986, “
Laminar Compressible Flow in a Tube
,”
Appl. Sci. Res.
0003-6994,
43
, pp.
67
74
.
6.
Pfahler
,
J.
,
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Flow in Small Channels
,”
Symposium on Micro-Mechanical Sensors, Actuators and Systems
, New York, ASME DSC 32, pp.
49
60
.
7.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Micro-Tubes
,”
Symposium on Micro-Mechanical Sensors, Actuators and Systems
, New York, ASME DSC 32, pp.
123
134
.
8.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford
.
9.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Micro-Channels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
10.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flows in Long Micro-Channels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
11.
Quarmby
,
A.
, 1968, “
A Finite-Difference Analysis of Developing Slip Flow
,”
Appl. Sci. Res.
0003-6994,
19
, pp.
18
33
.
12.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1995, “
Simulation of Heat and Momentum Transfer in Complex Micro-Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
4
), pp.
647
655
.
13.
Chen
,
C. S.
,
Lee
,
S. M.
, and
Sheu
,
J. D.
, 1998, “
Numerical Analysis of Gas Flow in Micro-Channels
,”
Numer. Heat Transfer, Part A
1040-7782,
33
(
7
), pp.
749
762
.
14.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2001, “
A Numerical Investigation of Low Reynolds Number Gaseous Slip Flow at the Entrance of Circular and Parallel Plate Micro-Channels
,”
ECCOMAS Computational Fluid Dynamics Conference
, University of Swansea,
Swansea, Wales, UK
, September 4–7.
15.
Raju
,
R.
, and
Roy
,
S.
, 2004, “
Hydrodynamic Model for Micro-Scale Flows in a Channel With Two 90 Deg Bends
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
489
492
.
16.
Papautsky
,
I.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, 2001, “
A Review of Laminar Single-Phase Flow in Micro-Channels
,”
ASME IMECE Conference
,
New York
, November.
17.
Rostami
,
A. A.
,
Mujumdar
,
A. S.
, and
Saniei
,
N.
, 2002, “
Flow and Heat Transfer for Gas Flowing in Micro-Channels: A Review
,”
Heat Mass Transfer
0947-7411,
38
, pp.
359
367
.
18.
Gad-el-hak
,
M.
, 1999, “
The Fluid Mechanics of Micro-Devices—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
5
33
.
19.
Lee
,
S. Y. K.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Gas Flow in Micro-Channels With Bends
,”
J. Micromech. Microeng.
0960-1317,
11
, pp.
635
644
.
20.
Robin
,
H. L.
,
Mark
,
A. S.
,
Dendra
,
V. S.
,
Michael
,
G. O.
,
Juan
,
G. S.
,
Ronald
,
J. A.
,
Hassan
,
A.
, and
David
,
J. B.
, 2000, “
Passive Mixing in a Three-Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
1057-7157,
9
(
2
), pp.
190
197
.
You do not currently have access to this content.