The evolution process and turbulence properties of a transversely oscillating flow induced by a fluidic oscillator are studied in a gravity-driven water tunnel. A planar jet is guided to impinge a specially designed crescent surface of a target blockage that is enclosed in a cavity of a fluidic oscillator. The geometric configuration of the cavity transforms the inherent stability characteristics of the jet from convective instability to absolute instability, so that the jet precedes the persistent back and forth swinging in the cavity. The swinging jet is subsequently directed through two passages and issued alternatively out of the fluidic oscillator. Two short plates are installed near the exits of the alternatively issuing pulsatile jets to deflect the jets toward the central axis. The deflected jets impinge with each other and form a pair of counter-rotating vortices in the near wake of the oscillator with a stagnation point at the impingement point. The stagnation point of the counter-rotating vortex pair moves back and forth transversely because of the phase difference existing between the two issued jets. The merged flow evolving from the counter-rotating vortices formed by the impingement of the two pulsatile jets therefore presents complex behavior of transverse oscillation. The topological models corresponding to the flow evolution are constructed to illustrate the oscillation process of the oscillating flow. Significant momentum dispersion and large turbulence intensity are induced by the transverse oscillation of the merged flow. The statistical turbulence properties show that the Lagrangian integral time and length scales of the turbulence eddies (the fine-scale structure) produced in the oscillating flow are drastically reduced.

1.
Yule
,
A. J.
, 1978, “
Large-Scale Structure in the Mixing Layer of a Round Jet
,”
J. Fluid Mech.
0022-1120,
89
, pp.
413
432
.
2.
Brown
,
G. L.
, and
Roshko
,
A.
, 1974, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
0022-1120,
64
, pp.
775
816
.
3.
Tritton
,
D. J.
, 1988,
Physical Fluid Dynamics
,
Oxford University Press
, Oxford, pp.
123
151
.
4.
Coles
,
D.
, 1985, “
The Uses of Coherent Structure
,” AIAA Paper 85-0506.
5.
Laufer
,
J.
, and
Ta-Chun
,
Y.
, 1983, “
Noise Generation by a Low Mach Number Jet
,”
J. Fluid Mech.
0022-1120,
134
, pp.
1
31
.
6.
Fiedler
,
H. E.
, and
Mensing
,
P.
, 1985, “
The Plane Turbulent Shear Layer With Periodic Excitation
,”
J. Fluid Mech.
0022-1120,
150
, pp.
281
309
.
7.
Schadow
,
K. C.
, and
Gutmark
,
E.
, 1992, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
0360-1285,
18
, pp.
117
132
.
8.
Huerre
,
P.
, and
Monkewitz
,
P. A.
, 1985, “
Absolute and Convective Instabilities in Free Shear Layers
,”
J. Fluid Mech.
0022-1120,
159
, pp.
151
168
.
9.
Gad-el-Hak
,
M.
, 1998,
Flow Control - Fundamentals and Practices
,
M.
Gad-el-Hak
,
A.
Pollard
and
J.-P.
Bonnet
, eds.,
Springer-Verlag
, Berlin, pp.
335
429
.
10.
Camci
,
C.
, and
Herr
,
F.
, 2002, “
Forced Convection Heat Transfer Using a Self-Oscillating Impinging Planar Jet
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
770
782
.
11.
Tippetts
,
J. R.
,
Ng
,
H. K.
, and
Royle
,
J. K.
, 1973, “
An Oscillating Bi-Stable Fluid Amplifier for Use as a Flowmeter
,”
J. Fluid Control
8755-8564,
5
, pp.
28
42
.
12.
Yamasaki
,
H.
, and
Honda
,
S.
, 1981, “
A Unified Approach to Hydrodynamic Oscillator Type Flowmeters
,”
J. Fluid Control
8755-8564,
13
, pp.
1
17
.
13.
Wang
,
H.
,
Beck
,
S. B. M.
,
Priestman
,
G. H.
, and
Boucher
,
R. F.
, 1998, “
A Remote Measuring Flow Meter for Petroleum and Other Industrial Applications
,”
Meas. Sci. Technol.
0957-0233,
9
, pp.
779
789
.
14.
Yamamoto
,
K.
,
Hiroki
,
F.
, and
Huodo
,
K.
, 1999, “
Self-Sustained Oscillation Phenomena of Fluidic Flowmeters
,”
J. Visualization
1343-8875,
1
, pp.
387
396
.
15.
Rockwell
,
D.
, and
Naudascher
,
E.
, 1978, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
0098-2202,
100
, pp.
152
165
.
16.
Lalanne
,
L.
,
Le Guer
,
Y.
, and
Creff
,
R.
, 2001, “
Dynamics of a Bifurcating Flow Within an Open Heated Cavity
,”
Int. J. Therm. Sci.
1290-0729,
40
, pp.
1
10
.
17.
Lin
,
J.-C.
, and
Rockwell
,
D.
, 2001, “
Oscillations of a Turbulent Jet Incident Upon an Edge
,”
J. Fluids Struct.
0889-9746,
15
, pp.
791
829
.
18.
Potter
,
M. C.
, 2002,
Mechanics of Fluids
,
Prentice-Hall
, New York.
19.
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
, 1988,
Fundamentals of Air Pollution Engineering
,
Prentice-Hall
, Englewood Cliffs, NJ, pp.
290
307
.
20.
Richard
,
C. F.
, and
John
,
H. S.
, 1988,
Fundamentals of Air Pollution Engineering
,
Prentice Hall
, NJ, pp.
290
357
.
21.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1992, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
0003-6994,
49
, pp.
191
215
.
22.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Doedell
,
R. B.
, 1985, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
0098-2202,
107
, pp.
161
164
.
23.
Lighthill
,
M. J.
, 1963,
Laminar Boundary Layers
,
Oxford University Press
, Cambridge, pp.
48
88
.
24.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
, 1978, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles: Applying Topology to Flow Visualization
,”
J. Fluid Mech.
0022-1120,
86
, pp.
299
446
.
25.
Zdravkovich
,
M. M.
, 1997,
Flow Around Circular Cylinder
,
Oxford University Press
, Oxford, UK.
26.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Cambridge, UK, 3rd ed., pp.
205
216
.
27.
Lin
,
Y. F.
, and
Sheu
,
M. J.
, 1991, “
Interaction of Parallel Plane Jets
,”
AIAA J.
0001-1452,
29
, pp.
1372
1373
.
28.
Nasr
,
A.
, and
Lai
,
J. C. S.
, 1997, “
Comparison of Flow Characteristics in the Near Field of Two Parallel Plane Jets and an Offset Plane Jet
,”
Phys. Fluids
1070-6631,
9
, pp.
2919
2931
.
29.
McGillem
,
C. D.
, and
Cooper
,
G. R.
, 1984,
Continuous and Discrete Signal and System Analysis
, 2nd ed.,
Holt, Rinehart and Winston
, NY, pp.
168
197
.
30.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT Press
, Cambridge, pp.
248
261
.
31.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
, 1981, “
Taylor Hypothesis and Large-Scale Coherent Structures
,”
J. Fluid Mech.
0022-1120,
112
, pp.
379
396
.
You do not currently have access to this content.