The prediction performance of two computational fluid dynamics codes is compared to each other and to experimental data of a complex swirling and tumbling flow in a practical complex configuration. This configuration consists of a flow in a production-type heavy-duty diesel engine head with 130-mm cylinder bore. One unsteady Reynolds-averaged Navier-Stokes (URANS)-based simulation and two large-eddy simulations (LES) with different inflow conditions have been performed with the KIVA-3V code. Two LES with different resolutions have been performed with the FASTEST-3D code. The parallelization of the this code allows for a more resolved mesh compared to the KIVA-3V code. This kind of simulations gives a complete image of the phenomena that occur in such configurations, and therefore represents a valuable contribution to experimental data. The complex flow structures gives rise to an inhomogeneous turbulence distribution. Such inhomogeneous behavior of the turbulence is well captured by the LES, but naturally damped by the URANS simulation. In the LES, it is confirmed that the inflow conditions play a decisive role for all main flow features. When no particular treatment of the flow through the runners can be made, the best results are achieved by computing a large part of the upstream region, once performed with the FASTEST-3D code. If the inflow conditions are tuned, all main complex flow structures are also recovered by KIVA-3V. The application of upwinding schemes in both codes is in this respect not crucial.

1.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
2.
Hanjalić
,
K.
, 1994, “
Advanced Turbulence Closure Models: A View of Current Status and Future Prospects
,”
Int. J. Heat Fluid Flow
0142-727X,
15
(
3
), pp.
178
203
.
3.
Laurence
,
D.
, 2004, “
Applications of Reynolds Averaged Navier Stokes Equations to Industrial Flows
,”
von Karman Institute Lecture Notes
,
Rhode Saint Genése
,
Belgium
.
4.
Celik
,
I.
,
Yavuz
,
I.
, and
Smirnov
,
A.
, 2001, “
Large Eddy Simulations of In-Cylinder Turbulence for Internal Combustion Engines: A Review
,”
Int. J. Engine Research
,
2
(
2
), pp.
119
148
.
5.
Haworth
,
D. C.
, and
Jansen
,
K.
, 2000, “
Large-Eddy Simulation on Unstructured Deforming Meshes: Towards Reciprocating IC Engines
,”
Comput. Fluids
0045-7930,
29
, pp.
493
524
.
6.
Sagaut
,
P.
, 2002,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer-Verlag Berlin
,
Germany
.
7.
Geurts
,
B. J.
, 2005, “
Database-Analysis of Interacting Errors in Large-Eddy Simulation
,”
Proceedings of the Quality Assessment of Unsteady Methods
.
8.
Piomelli
,
U.
, 1999, “
Large Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
0376-0421,
35
, pp.
335
362
.
9.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
0021-9991,
140
, pp.
233
258
.
10.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2003, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
0021-9991,
186
(
2
), pp.
652
665
.
11.
Amsden
,
A. A.
,
O’Rourke
,
P. J.
, and
Butler
,
T. D.
, 1989, “
Kiva-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Technical Report la-11560-ms, Los Alamos National Laboratory.
12.
Mengler
,
C.
, 2001, “
Grobstruktursimulation der Strömungs- und Mischungsfelder Komplexer Anwendungsnaher Konfigurationen
,” Ph.D. thesis, TU Darmstadt.
13.
de Leeuw
,
R.
, 2005, “
Comparison of PIV and LDA on a Stationary Flow-Bench of a Heavy-Duty Cylinder-Head
,” Master’s thesis, TU/e, Eindhoven, The Netherlands.
14.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
, pp.
183
200
.
15.
Hirsch
,
C.
, 1990,
Numerical Computation of Internal and External Flows
,
Wiley
,
Chichester, UK
.
16.
Huijnen
,
V.
,
Somers
,
L. M. T.
,
Baert
,
R. S. G.
, and
de Goey
,
L. P. H.
, 2005, “
Validation of the LES Approach in Kiva-3V on a Square Duct Geometry
,”
Int. J. Numer. Eng.
,
64
, pp.
907
919
.
17.
Celik
,
I.
,
Yavuz
,
I.
,
Smirnov
,
A.
,
Smith
,
J.
,
Amin
,
E.
, and
Gel
,
A.
, 2000, “
Prediction of In-Cylinder Turbulence for IC Engines
,”
Combust. Sci. Technol.
0010-2202,
153
, pp.
339
368
.
18.
Sone
,
K.
, and
Menon
,
S.
, 2003, “
Effect of Subgrid Modeling on the In-Cylinder Unsteady Mixing Process in a Direct Injection Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
435
443
.
19.
Lilly
,
D.
, 1992, “
A Proposed Modification of the Germano Subgrid-Closure Method
,”
Phys. Plasmas
1070-664X,
4
(
3
), pp.
633
635
.
20.
Lesieur
,
M.
, and
Metais
,
O.
, 1996, “
New Trends in Large Eddy Simulations of Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
45
82
.
21.
Lehnhäuser
,
T.
, and
Schäfer
,
M.
, 2002, “
Improved Linear Interpolation Practice for Finite-Volume Schemes on Complex Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
38
, pp.
625
645
.
22.
Durst
,
F.
, and
Schäfer
,
M.
, 1996, “
A Parallel Blockstructured Multigrid Method for the Prediction of Incompressible Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
22
, pp.
549
565
.
23.
Doosje
,
E.
,
Bastiaans
,
R. J. M.
, and
Baert
,
R. S. G.
, 2004, “
Application of PIV to Characterize the Flow-Phenomena of a Heavy-Duty Cylinder Head on a Stationary Flow-Bench
,”
Proceedings of the EUROPIV 2 Workshop
.
25.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Nieuwstadt
,
F. T. M.
, and
Friedrich
,
R.
, 1994, “
Fully Developed Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
26.
Temmerman
,
L.
,
Hadžiabdić
,
M.
,
Leschziner
,
M. A.
, and
Hanjalić
,
K.
, 2005, “
A Hybrid Two-Layer URANS-LES Approach for Large Eddy Simulation at High Reynolds Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
173
190
.
You do not currently have access to this content.