Flow geometry effects are examined on the turbulent mixing efficiency quantified as the mixture fraction. Two different flow geometries are compared at similar Reynolds numbers, Schmidt numbers, and growth rates, with fully developed turbulence conditions. The two geometries are the round jet and the single-stream planar shear layer. At the flow conditions examined, the jet exhibits an ensemble-averaged mixing efficiency which is approximately double the value for the shear layer. This substantial difference is explained fluid mechanically in terms of the distinct large-scale entrainment and mixing-initiation environments and is therefore directly due to flow geometry effects.

1.
Aguirre
,
R. C.
,
Catrakis
,
H. J.
,
Nathman
,
J. C.
, and
Garcia
,
P. J.
, 2006, “
Robust Volume-Based Approach for the Turbulent Mixing Efficiency
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
864
873
.
2.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
, 2000, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
553
557
.
3.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
, 2001, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
878
883
.
4.
Jumper
,
E. J.
, and
Fitzgerald
,
E. J.
, 2001, “
Recent Advances in Aero-Optics
,”
Prog. Aerosp. Sci.
0376-0421,
37
, pp.
299
339
.
5.
Dimotakis
,
P. E.
, 1991, “
Turbulent Free Shear Layer Mixing and Combustion
,”
High Speed Flight Propulsion Systems
(
Progress in Astronautics and Aeronautics Vol. 37
),
S.
Murthy
and
E.
Curran
, eds.,
AIAA
,
Washington, DC
.
6.
Catrakis
,
H. J.
, 2004, “
Turbulence and the Dynamics of Fluid Interfaces With Applications to Mixing and Aero-Optics
,”
Recent Research Developments in Fluid Dynamics
,
N.
Ashgriz
and
R.
Anthony
, eds.,
Transworld Research Network Publishers
,
Kerala, India
, Vol.
5
, pp.
115
158
.
7.
King
,
G. F.
,
Dutton
,
J. C.
, and
Lucht
,
R. P.
, 1999, “
Instantaneous, Quantitative Measurements of Molecular Mixing in the Axisymmetric Jet Near Field
,”
Phys. Fluids
1070-6631,
11
, pp.
403
416
.
8.
deBruynKops
,
S. M.
, and
Riley
,
J. J.
, 2001, “
Mixing Models for Large-Eddy Simulation of Nonpremixed Turbulent Combustion
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
341
346
.
9.
Geurts
,
B. J.
, 2001, “
Mixing Efficiency in Turbulent Shear Layers
,”
IEEE Trans. Power Syst.
0885-8950,
2
(
17
), pp.
1
23
.
10.
Caulfield
,
C. P.
, and
Kerswell
,
R. R.
, 2001, “
Maximal Mixing Rate in Turbulent Stably Stratified Couette Flow
,”
Phys. Fluids
1070-6631,
13
(
4
), pp.
894
900
.
11.
Roshko
,
A.
, 1991, “
The Mixing Transition in Free Shear Flows
,”
The Global Geometry of Turbulence
,
J.
Jiménez
, ed.,
Plenum
,
New York
, pp.
3
11
.
12.
Koochesfahani
,
M. M.
, and
Dimotakis
,
P. E.
, 1986, “
Mixing and Chemical Reactions in a Turbulent Liquid Mixing Layer
,”
J. Fluid Mech.
0022-1120,
170
, pp.
83
112
.
13.
Mungal
,
M. G.
, and
Dimotakis
,
P. E.
, 1984, “
Mixing and Combustion With Low Heat Release in a Turbulent Shear Layer
,”
J. Fluid Mech.
0022-1120,
148
, pp.
349
382
.
14.
Dahm
,
W. J. A.
, and
Dimotakis
,
P. E.
, 1990, “
Mixing at Large Schmidt Number in the Self-Similar Far Field of Turbulent Jets
,”
J. Fluid Mech.
0022-1120,
217
, pp.
299
330
.
15.
Karasso
,
P. S.
, and
Mungal
,
M. G.
, 1996, “
Scalar Mixing and Reaction in Plane Liquid Shear Layers
,”
J. Fluid Mech.
0022-1120,
323
, pp.
23
63
.
16.
MacKinnon
,
C. G.
, and
Koochesfahani
,
M. M.
, 1997, “
Flow Structure and Mixing in a Low Reynolds Number Forced Wake Inside a Confined Channel
,”
Phys. Fluids
1070-6631,
9
, pp.
3099
3101
.
17.
Freund
,
J. B.
,
Moin
,
P.
, and
Lele
,
S. K.
, 2000, “
Compressibility Effects in a Turbulent Annular Mixing Layer. Part 2. Mixing of a Passive Scalar
,”
J. Fluid Mech.
0022-1120,
421
, pp.
269
292
.
18.
Clemens
,
N. T.
, and
Mungal
,
M. G.
, 1995, “
Large-Scale Structure and Entrainment in the Supersonic Mixing Layer
,”
J. Fluid Mech.
0022-1120,
284
, pp.
171
216
.
19.
Fernando
,
H. J. S.
, and
Hunt
,
J. C. R.
, 1996, “
Some Aspects of Turbulence and Mixing in Stably Stratified Fluids
,”
Dyn. Atmos. Oceans
0377-0265,
23
, pp.
35
62
.
20.
Catrakis
,
H. J.
,
Aguirre
,
R. C.
,
Ruiz-Plancarte
,
J.
,
Thayne
,
R. D.
,
McDonald
,
B. A.
, and
Hearn
,
J. W.
, 2002, “
Large-Scale Dynamics in Turbulent Mixing and the Three-Dimensional Space-Time Behaviour of Outer Fluid Interfaces
,”
J. Fluid Mech.
0022-1120,
471
, pp.
381
408
.
21.
Catrakis
,
H. J.
, and
Aguirre
,
R. C.
, 2004, “
Interfacial-Fluid Dynamics and the Mixing Efficiency of Turbulent Flows
,”
Phys. Fluids
1070-6631,
16
(
12
), pp.
4746
4749
.
22.
Aguirre
,
R. C.
, and
Catrakis
,
H. J.
, 2005, “
On Intermittency and the Physical Thickness of Turbulent Fluid Interfaces
,”
J. Fluid Mech.
0022-1120,
540
, pp.
39
48
.
23.
Dimotakis
,
P. E.
, 2000, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
409
, pp.
69
98
.
24.
Dimotakis
,
P. E.
, 2005, “
Turbulent Mixing
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
329
356
.
25.
Brown
,
G. L.
, and
Roshko
,
A.
, 1974, “
On Density Effects and Large Scale Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
0022-1120,
64
, pp.
775
816
.
26.
Gad-el Hak
,
M.
, 2000,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge
.
27.
Sreenivasan
,
K. R.
, 1991, “
Fractals and Multifractals in Fluid Turbulence
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
539
600
.
28.
Bisset
,
D. K.
,
Hunt
,
J. C.
, and
Rogers
,
M. M.
, 2002, “
The Turbulent/Non-Turbulent Interface Bounding a Far Wake
,”
J. Fluid Mech.
0022-1120,
451
, pp.
381
410
.
29.
Su
,
L. K.
, and
Clemens
,
N. T.
, 1999, “
Planar Measurements of the Full Three-Dimensional Scalar Dissipation Rate in Gas-Phase Turbulent Flows
,”
Exp. Fluids
0723-4864,
27
, pp.
507
521
.
30.
Jiménez
,
J.
, and
Martel
,
C.
, 1991, “
Fractal Interfaces and Product Generation in the Two-Dimensional Mixing Layer
,”
Phys. Fluids A
0899-8213,
3
(
5
), pp.
1261
1268
.
You do not currently have access to this content.