In the present paper a computational algorithm suitable for large-eddy simulations of fluid/structure problems that are commonly encountered in biological flows is presented. It is based on a mixed Eurelian-Lagrangian formulation, where the governing equations are solved on a fixed grid, which is not aligned with the body surface, and the nonslip conditions are enforced via local reconstructions of the solution near the solid interface. With this strategy we can compute the flow around complex stationary/moving boundaries and at the same time maintain the efficiency and optimal conservation properties of the underlying Cartesian solver. A variety of examples, that establish the accuracy and range of applicability of the method are included.

1.
Johnston
,
A. A.
, and
Tezduyar
,
D. E.
, 1997, “
3D Simulation of Fluid-Particle Interactions With the Number of Particles Reaching 100
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
145
, pp.
301
321
.
2.
Hu
,
H. H.
,
Patankar
,
N. A.
, and
Zhu
,
M.-Y.
, 2001, “
Numerical Simulations of Fluid-Solid Systems Using Arbitrary-Lagrangian-Eulerian Technique
,”
J. Comput. Phys.
0021-9991,
169
, pp.
427
462
.
3.
Newman
,
D. J.
, and
Karniadakis
,
G. E.
, 1997, “
Simulations of Flow Past a Freely Vibrating Cable
,”
J. Fluid Mech.
0022-1120,
344
, p.
95
.
4.
Evangelinos
,
C.
, and
Karniadakis
,
G. E.
, 1999, “
Dynamics and Flow Structures in the Turbulent Wake of Rigid and Flexible Cylinders Subject to Vortex-Induced Vibrations
,”
J. Fluid Mech.
0022-1120,
400
, pp.
91
124
.
5.
Ramamurti
,
R.
, and
Sandberg
,
W. C.
, 2001, “
Computational Study of 3D Flapping Foil Flows
,” AIAA paper No. 2001-0605.
6.
Jouette
,
C.
,
Laget
,
O.
,
Gouez
,
J.-M.
, and
Viviand
,
H.
, 2002, “
A Dual Time Stepping Method for Fluid-Structure Interaction Problems
,”
Comput. Fluids
0045-7930,
31
, pp.
509
537
.
7.
De Zeeuw
,
D.
, and
Powell
,
K. G.
, 1991, “
An Adaptively Refined Cartesian Mesh Solver for the Euler Equations
,” AIAA Paper No. 91-1542-CP.
8.
Quirk
,
J. J.
, 1994, “
An Alternative to Unstructured Grids for Computing Gas Dynamic Flows Around Arbitrary Two-Dimensional Bodies
,”
Comput. Fluids
0045-7930,
23
, p.
125
.
9.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
, 1999, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
156
, pp.
209
240
.
10.
Udaykumar
,
H. S.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
, 2001, “
A Sharp Interface Cartesian Grid Method for Simulating Flows With Complex Moving Boundaries
,”
J. Comput. Phys.
0021-9991,
174
, pp.
345
380
.
11.
Peskin
,
C. S.
, 1972, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
0021-9991,
10
, pp.
252
271
.
12.
Peskin
,
C. S.
, and
McQueen
,
D. M.
, 1992, “
Cardiac Fluid Dynamics
,”
Crit. Rev. Biomed. Eng.
0278-940X,
20
, pp.
451
459
.
13.
Peskin
,
C. S.
, and
McQueen
,
D. M.
, 1997, “
Shared-Memory Parallel Vector Implementation of the Immersed Boundary Method for the Computation of Blood Flow in the Beating Mammalian Heart
,”
J. Supercomput.
0920-8542,
11
, pp.
213
236
.
14.
Mohd-Yusof
,
J.
, 1997, “
Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries
,”
CTR Annual Research Briefs
,
NASA Ames/Stanford University
.
15.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
, 2000, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
0021-9991,
161
, pp.
35
60
.
16.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
, 2001, “
An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
0021-9991,
171
, pp.
132
150
.
17.
Balaras
,
E.
, 2004, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
0045-7930,
33
, pp.
375
404
.
18.
Meneveau
,
C.
,
Lund
,
T. S.
, and
Cabot
,
W. H.
, 1996, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
0022-1120,
319
, p.
353
.
19.
Sarghini
,
F.
,
Piomelli
,
U.
, and
Balaras
,
E.
, 1999, “
Scale-Similar Models for Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
11
, pp.
1596
1607
.
20.
Udaykumar
,
H. S.
,
Kan
,
H.-C.
,
Shyy
,
W.
, and
Tran-Son-Tay
,
R.
, 1997, “
Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids
,”
J. Comput. Phys.
0021-9991,
137
, pp.
366
405
.
21.
Udaykumar
,
H. S.
,
Mittal
,
R.
, and
Shyy
,
W.
, 1999, “
Computation od Solid Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids
,”
J. Comput. Phys.
0021-9991,
153
, pp.
535
574
.
22.
Tseng
,
Y. H.
, and
Ferziger
,
J. H.
, 2003, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
0021-9991,
192
, pp.
593
623
.
23.
Orlansky
,
I.
, 1976, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
0021-9991,
21
, p.
251
.
24.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,1978,
Bubbles, Drops and Particles
,
Academic
, San Diego, CA.
25.
Johnson
,
T.
, and
Patel
,
V. C.
, 1999, “
Flow Past a Sphere up to a Reynolds Number of 300
,”
J. Fluid Mech.
0022-1120,
378
, p.
10
.
26.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988, “
Eddies, Streams and Convergence Zones in Turbulent Flows. Center for Turbulence Research
,” in
Proceedings of the Summer Program 1988
, p.
193
.
27.
Guilmineau
,
E.
, and
Queutey
,
P.
, 2002, “
A Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder
,”
J. Fluids Struct.
0889-9746,
16
, pp.
773
794
.
28.
Kiger
,
K.
, 2004 (private communication).
29.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
, 1976, “
Experiments on Transition to Turbulence in an Oscillating Pipe Flow
,”
J. Fluid Mech.
0022-1120,
75
, pp.
193
207
.
30.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
, 2004, “
Inflow Conditions for Numerical Simulations of Bypass Transition
,” AIAA 2004-0591.
You do not currently have access to this content.