The paper provides a view of some developments and a perspective on the future role of the Reynolds-averaged Navier-Stokes (RANS) approach in the computation of turbulent flows and heat transfer in competition with large-eddy simulations (LES). It is argued that RANS will further play an important role, especially in industrial and environmental computations, and that the further increase in the computing power will be used more to utilize advanced RANS models to shorten the design and marketing cycle rather than to yield the way to LES. We also discuss some current and future developments in RANS aimed at improving their performance and range of applicability, as well as their potential in hybrid approaches in combination with the LES strategy. Limitations in LES at high Reynolds (Re) and Rayleigh (Ra) number flows and heat transfer are revisited and some hybrid RANS/LES routes are discussed. The potential of very large eddy simulations (VLES) of flows dominated by (pseudo)-deterministic eddy structures, based on transient RANS (T-RANS) and similar approaches, is discussed and illustrated in an example of “ultra-hard” (very high Ra) thermal convection.

1.
Hanjalic
,
K.
, and
Kenjereš
,
S.
, 2001, “
T-RANS Simulation of Deterministic Eddy Structure in Flows Driven by Thermal Buoyancy and Lorentz Force
,”
Flow, Turbul. Combust.
1386-6184,
66
, pp.
427
451
.
2.
Ha Minh
,
H.
, and
Kourta
,
A.
, 1993, “
Semi-Deterministic Turbulence Modeling for Flows Dominated by Strong Organized Structures
,”
Proc. 9th Int. Symp. on Turb. Shear Flows
, Kyoto, Japan, pp.
10.5
-1–
10.5.6
.
3.
Farge
,
M.
,
Schneider
,
K.
,
Pellegrino
,
G.
,
Wray
,
A. A.
, and
Rogallo
,
R. S.
, 2003, “
Coherent Vortex Extraction in Three-Dimensional Homogeneous Turbulence: Comparison Between CVS-Wavelet and POD-Fourier Decompsition
,”
Phys. Fluids
1070-6631,
15
(
10
), pp.
2886
2896
.
4.
Girimaji
,
S. S.
,
Srinivasan
,
R.
, and
Jeong
,
E.
, 2003, “
PANS Turbulence Model for Seamless Transition Between RANS and LES: Fixed-Point Analysis and Preliminary Results
,” Paper No FEDSM2003-45336,
Proc. ASME FEDSM’03
.
5.
Spalart
,
P.
, 2000, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
252
263
.
6.
Hanjalic
,
K.
,
Hadziabdic
,
M.
,
Temmerman
,
L.
, and
Leschziner
,
M.
, 2004, “
Merging LES and RANS Strategies: Zonal or Seamless Coupling
?” in
Direct and Large Eddy Simulations V.
,
R.
Friedrich
,
B.
Geurts
, and
O.
Metais
, eds.,
Kluwer Academic Publishers
, Dordrecht, pp.
451
464
.
7.
Pope
,
S. B.
, 1999, “
A Perspective on Turbulence Modeling
,” in
Modeling Complex Flows
,
M. D.
Salas
,
J. N.
Hefner
, and
L.
Sakell
(eds.),
Kluwer Academic Publisher
, Dordrecht, pp.
53
67
.
8.
Niceno
,
B.
,
Dronkers
,
A. D. T.
, and
Hanjalic
,
K.
, 2002, “
Turbulent Heat Transfer From a Multi-Layered Wall-Mounted Cube Matrix: an LES
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
173
185
.
9.
Mainders
,
E.
, and
Hanjalic
,
K.
, 1999, “
Vortex Structure and Heat Transfer in Turbulent Flow Over a Wall-Mounted Natrix of Cubes
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
255
267
.
10.
Hanjalic
,
K.
, and
Jakirlic
,
S.
, 2002, “
Second-Moment Turbulence Closure Modelling
,” in
Closure Strategies for Turbulent and Transitional Flows
,
B. E.
Launder
and
N.
Sandham
, eds.,
Cambridge University Press
, Cambridge, pp.
47
101
.
11.
Geroymos
,
G. A.
,
Neubauer
,
J.
,
Sharma
,
V. C.
, and
Vallet
,
I.
, 2002, “
Improved Prediction of Turbomachinery Flows Using Near-Wall Reynolds-Stress Model
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
86
99
.
12.
Craft
,
T. J.
, and
Launder
,
B. E.
, 2002, “
Closure Modelling Near the Two-Component Limit
,” in
Closure strategies for turbulent and transitional flows
,
B. E.
Launder
and
N.
Sandham
, eds.,
Cambridge University Press
, Cambridge, pp.
102
126
.
13.
Leschziner
,
M. A.
, and
Lien
,
F.-S.
, 2002, “
Numerical Aspects of Applying Second-Moment Closure to Complex Flows
,” In
Closure Strategies for Turbulent and Transitional Flows
,
B. E.
Launder
and
N.
Sandham
, eds.,
Cambridge University Press
, Cambridge, pp.
153
187
.
14.
Basara
,
B.
, 2004, “
Employment of the Second-Moment Turbulence Closure on Arbitrary Unstructured Grid
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
(
4
), pp.
377
408
.
15.
Basara
,
B.
, and
Jakirlic
,
S.
, 2003, “
A New Hybrid Modelling Strategy for Industrial CFD
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
, pp.
89
116
.
16.
Chassaing
,
J.
,
Gerolymos
,
G. A.
, and
Vallet
,
I.
, 2003, “
Reynolds-Stress Model Dual-Time-Stepping Computation of Unsteady Three-Dimensional Flows
,”
AIAA J.
0001-1452,
41
, pp.
1882
1894
.
17.
Yang
,
S. L.
,
Peschke
,
D. B.
, and
Hanjalic
,
K.
, 2000, “
Second-Moment Closure Model for IC Engine Flow Simulation Using KIVA Code
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
355
363
.
18.
Yang
,
S. L.
,
Siow
,
Y. K.
,
Teo
,
C. Y.
, and
Hanjalic
,
K.
, 2005, “
A KIVA Code With Reynolds-Stress Model for Engine Simulation
,”
Energy Int. J.
,
30
, pp.
427
445
.
19.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991, “
Modelling the Pressure Strain Correlation of Turbulence: An Invariant Dynamic System Approach
,”
J. Fluid Mech.
0022-1120,
227
, pp.
245
272
.
20.
Wallin
,
S.
, and
Johansson
,
A.
, 2002, “
Modelling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
721
730
.
21.
Durbin
,
P.
, 1991, “
Near-Wall Turbulence Closure Modeling Without ‘Damping Functions
,’”
Theor. Comput. Fluid Dyn.
0935-4964,
3
, pp.
1
13
.
22.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1996, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
108
115
.
23.
Chen
,
W. L.
,
Lien
,
F. S.
, and
Leschziner
,
M. A.
, 1998, “
Computational Prediction of Flow Around Highly Loaded Compressor-Cascade Blades With Non-Linear Eddy-Viscosity Models
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
307
319
.
24.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
, 2004, “
A Robust Near-Wall Elliptic Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
1047
1051
.
25.
Manceau
,
R.
, and
Hanjalic
,
K.
, 2002, “
Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
744
754
.
26.
Durbin
,
P. A.
, 1993, “
Reynolds Stress Model for Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
249
, pp.
465
498
.
27.
Thielen
,
L.
,
Jonker
,
H. J.
, and
Hanjalic
,
K.
, 2003, “
Symmetry Breaking of Flow and Heat Transfer in Multiple Impinging Jets
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
444
453
.
28.
Thielen
,
L.
,
Hanjalic
,
K.
,
Jonker
,
H.
, and
Manceau
,
R.
, 2005, “
Predictions of Flow and Heat Transfer in Multiple Impinging Jets With an Elliptic-Blending Second-Moment Closure
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1583
1598
.
29.
Geers
,
L. F. G.
,
Tummers
,
M.
, and
Hanjalic
,
K.
, 2004, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
0723-4864,
36
, pp.
946
958
.
30.
Hanjalic
,
K.
,
Launder
,
B. E.
, and
Schiestel
,
R.
, 1980, “
Multiple-Scale Concepts in Turbulenct Transport Modelling
,” In
Turbulent Shear Flow 2
,
F.
Durst
et al.
, eds.,
Springer
, Berlin, pp.
36
49
.
31.
Schiestel
,
R.
, 1987, “
Multiple-Time Scale Modeling of Turbulent Flows in One Point Closures
,”
Phys. Fluids
0031-9171,
30
(
3
), pp.
722
731
.
32.
Cadiou
,
A.
,
Hanjalic
,
K.
, and
Stawiarski
,
K.
, 2004, “
A Two-Scale Second-Moment Turbulence Closure Based on Weighted Spectrum Integration
,”
Theor. Comput. Fluid Dyn.
0935-4964,
18
, pp.
1
26
.
33.
Temmerman
,
L.
,
Leschziner
,
M. A.
,
Hadziabdic
,
M.
, and
Hanjalic
,
K.
, 2005, “
A Hybrid Two-Layer URANS-LES Approach for Large-Eddy Simulation at Hight Reynolds Numbers
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
173
190
.
34.
Schiestel
,
R.
, and
Dejoan
,
A.
, 2005, “
Towards a New Partially Integrated Transport Model for Coarse Grid and Unsteady Turbulent Flow Simulations
,”
Theor. Comput. Fluid Dyn.
0935-4964,
18
, pp.
443
468
.
35.
Nikitin
,
N. V.
,
Nocoud
,
F.
,
Wasistho
,
B.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
, 2000, “
An Approach to Wall Modelling in Large-Eddy Simulations
,”
Phys. Fluids
1070-6631,
12
(
7
), pp.
1629
1632
.
36.
Piomelli
,
U.
,
Balaras
,
E.
,
Pasinato
,
H.
,
Squires
,
H.
, and
Spalart
,
P.
, 2003, “
The Inner-Outer Layer Interface in Large-Eddy Simulations With Wall-Layer Modsels
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
538
550
.
37.
Davidson
,
L.
, and
Dahlstöm
,
S.
, 2004, “
Hybrid LES-RANS: An Approach to Make LES Applicable at High Reynolds Number
,”
Proc. (CD) CHT-04, Int. Symp. on Advances in Computational Heat Transfer
, April 19–25,
Norvey
, ICHMT/Begell House.
38.
Hadziabdic
,
M.
, and
Hanjalic
,
K.
(to be published).
39.
Hanjalic
,
K.
, 2002, “
One-Point Closure Models for Buoyancy-Driven Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
321
347
.
40.
Kenjereš
,
S.
, and
Hanjalic
,
K.
, 2002, “
Numerical Insight Into Flow Structure in Ultraturbulent Thermal Convection
,”
Phys. Rev. E
1063-651X,
66
, p.
036307
.
41.
Kenjereš
,
S.
, and
Hanjalic
,
K.
, 2002, “
Combined Effects of Terrain Orography and Thermal Stratification on Pollutant Dispersion in a Town Valley: a T-RANS Simulation
,”
J. Turbul.
1468-5248,
3
, pp.
1
21
.
You do not currently have access to this content.