Abstract
Axial flow in a rectangular channel containing a cylindrical rod has been simulated numerically by solving the unsteady Reynolds-averaged Navier–Stokes equations with a Reynolds stress model. The time- and phase-averaged mean velocity and turbulent stresses are in fair agreement with previous experimental results in a similar configuration. The study further documents the formation of quasi-periodic coherent structures in the form of vortex pairs and the important role that they play in transporting fluid across the gap region.
Issue Section:
Technical Papers
References
1.
Rowe
, D.
S.
, Johnson
, B.
M.
and Knudsen
, J.
G.
, 1974,
“Implications Concerning Rod Bundle Crossflow Mixing Based on
Measurements of Turbulent Flow Structure
,” Int. J.
Heat Mass Transfer
0017-9310
17
, pp. 407
–419
.2.
Trupp
, A.
C.
and Azad
, R.
S.
, 1975,
“The Structure of Turbulent Flow in Triangular Array Rod
Bundles
,” Nucl. Eng. Des.
0029-5493
32
(1
), pp.
47
–84
.3.
Carajilescov
,
P.
and
Todreas
, N.
E.
, 1976,
“Experimental and Analytical Study of Axial Turbulent Flows
in an Interior Subchannel of a Bare Rod Bundle
,”
ASME J. Heat Transfer
0022-1481
98
, pp. 262
–268
.4.
Seale
, W.
J.
, 1979,
“Turbulent Diffusion of Heat between Connected Flow Passages,
Part 1: Outline of Problem and Experimental Investigation
,”
Nucl. Eng. Des.
0029-5493
54
, pp. 183
–195
.5.
Hooper
, J.
D.
, 1980,
“Developed Single Phase Turbulent Flow through a Square-Pitch
Rod Cluster
,” Nucl. Eng. Des.
0029-5493
60
, pp. 365
–379
.6.
Hooper
, J.
D.
and Wood
, D.
H.
, 1984,
“Fully Developed Rod Bundle Flow over a Large Range of
Reynolds Number
,” Nucl. Eng. Des.
0029-5493
83
, pp. 31
–46
.7.
Hooper
, J.
D.
and Rehme
,
K.
,
1984, “Large-Scale
Structural Effects in Developed Turbulent Flow through Closely-Spaced Rod
Arrays
,” J. Fluid Mech.
0022-1120
145
, pp.
305
–337
.8.
Rehme
,
K.
,
1987, “The Structure of
Turbulent Flow through Rod Bundles
,” Nucl. Eng.
Des.
0029-5493
99
, pp. 141
–154
.9.
Wu
,
X.
and
Trupp
, A.
C.
, 1993,
“Experimental Study on the Unusual Turbulence Intensity
Distributions in Rod-to-Wall Gap Regions
,” Exp.
Therm. Fluid Sci.
0894-1777
6
, pp. 360
–370
.10.
Wu
,
X.
,
1995, “On the Transport
Mechanisms in Simulated Heterogeneous Rod Bundle
Subchannels
,” Nucl. Eng. Des.
0029-5493
158
, pp.
125
–134
.11.
Krauss
,
T.
and
Meyer
,
L.
,
1998, “Experimental
Investigation of Turbulent Transport of Momentum and Energy in a Heated Rod
Bundle
,” Nucl. Eng. Des.
0029-5493
180
, pp.
185
–206
.12.
Guellouz
,
M. S.
and Tavoularis
,
S.
,
2000, “The Structure of
Turbulent Flow in a Rectangular Channel Containing a Cylindrical rod -
Part1: Reynolds-Averaged Measurements
,” Exp. Therm.
Fluid Sci.
0894-1777
23
, pp. 59
–73
; Guellouz
,
M. S.
and Tavoularis
,
S.
,
2000, “-Part 2:
Phase-Averaged Measurements
,” Exp. Therm. Fluid
Sci.
0894-1777
23
, pp. 75
–91
.13.
Möller
, S.
V.
, 1991,
“On Phenomena of Turbulent Flow through Rod
Bundles
,” Exp. Therm. Fluid Sci.
0894-1777
4
, pp. 25
–35
.14.
Möller
, S.
V.
, 1992,
“Single-Phase Turbulent Mixing in Rod
Bundles
,” Exp. Therm. Fluid Sci.
0894-1777
5
, pp. 26
–33
.15.
Rehme
,
K.
,
1992, “The Structure of
Turbulence in Rod Bundles and the Implications on Natural Mixing between the
Subchannels
,” Int. J. Heat Mass Transfer
0017-9310
35
(2
), pp.
567
–581
.16.
Meyer
,
L.
and
Rehme
,
K.
,
1994, “Large-Scale
Turbulence Phenomena in Compound Rectangular Channels
,”
Exp. Therm. Fluid Sci.
0894-1777
8
, pp. 286
–304
.17.
Meyder
,
R.
,
1975, “Turbulent
Velocity and Temperature Distribution in the Central Subchannel of Rod
Bundles
,” Nucl. Eng. Des.
0029-5493
35
, pp. 181
–189
.18.
Seale
, W.
J.
, 1982,
“Measurements and Predictions of Fully Developed Turbulent
Flow in a Simulated Rod Bundle
,” J. Fluid
Mech.
0022-1120
123
, pp.
399
–423
.19.
Wu
,
X.
,
1994, “Numerical Study
on the Turbulence Structures in Closely Spaced Rod Bundle
Subchannels
,” Numer. Heat Transfer, Part A
1040-7782
25
, pp. 649
–670
.20.
Biemüller
,
M.
,
Meyer
,
L.
and
Rehme
,
K.
,
1996, “Large Eddy
Simulation and Measurement of the Structure of Turbulence in Two Rectangular
Channels Connected by a Gap
,” Engineering Turbulence
Modeling and Experiments
, edited by Rodi
and
Bergeles
,
Vol. 3
, pp.
249
–258
.21.
Lee
, K.
B.
and Jang
, H.
G.
, 1997,
“A Numerical Prediction on the Turbulent Flow in Closely
Spaced Bare Rod Arrays by a Nonlinear k−ε Model
,”
Nucl. Eng. Des.
0029-5493
172
, pp.
351
–357
.22.
Tavoularis
,
S.
,
Madrane
,
A.
and
Vaillancourt
,
R.
,
2002, “Numerical
Simulation of Coherent Structures in Axial Flow through a Rectangular
Channel containing a Cylindrical Rod
,” Proc. 10th
Ann. Conf. CFD Society of Canada
, June 9–11, Windsor, Ontario, pp.
105
–110
.23.
Chang
,
D.
, and
Tavoularis
,
S.
,
2004, “Identification of
Coherent Structures in Axial Flow in a Rectangular Channel Containing a
Rod
,” Proc. 12th Ann. Conf. CFD Society of
Canada
, May 9-11, Ottawa, Ontario, pp.
303
–309
.24.
Barth
, T.
J.
and Jespersen
,
D. C.
, 1989,
“The Design and Application of Upwind Schemes on Unstructured
Meshes
,” AIAA Paper89-0366, AIAA 27th Aerospace
Sciences Meeting
, Reno, Nevada.25.
Rhie
, C.
M.
and Chow
, W.
L.
, 1983,
“Numerical Study of the Turbulent Flow Past an Airfoil with
Trailing Edge Separation
,” AIAA J.
0001-1452
21
, pp.
1523
–1532
.26.
Van Doormal
, J.
P.
and Raithby
, G.
D.
, 1984,
“Enhancements of the SIMPLE Method for Predicting
Incompressible Fluid Flows
,” Numer. Heat
Transfer
0149-5720
7
, pp. 147
–163
.27.
Gresho
, P.
M.
, Lee
, R.
L.
and Sani
, R.
L.
, 1980,
“On the Time-Dependent Solution of the Incompressible
Navier–Stokes Equations in Two and Three Dimensions
,”
Recent Advances in Numerical Methods in Fluids
, edited by
C.
Taylor
and
K.
Morgan
,
Pineridge Press
, Swansea, U.K., Chap.
2.28.
Wilcox
, D.
C.
, 2000,
Turbulence Modeling for CFD
, DCW
Industries, Inc.
, La Canada, California, Chap.
6.29.
Gibson
, M.
M.
and Launder
, B.
E.
, 1978,
“Ground Effects on Pressure Fluctuations in the Atmospheric
Boundary Layer
,” J. Fluid Mech.
0022-1120
86
, pp. 491
–511
.30.
Launder
, B.
E.
, 1989,
“Second-Moment Closure: Present… and
Future?
,” Int. J. Heat Fluid Flow
0142-727X
9
(4
), pp.
963
–985
.31.
Lien
, F.
S.
and Leschziner
,
M. A.
, 1994,
“Assessment of Turbulent Transport Models Including
Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment
Closure
,” Comput. Fluids
0045-7930
23
(8
), pp.
983
–1004
.32.
Chen
, H.
C.
, and Patel
, V.
C.
, 1988,
“Near-Wall Turbulence Models for Complex Flows including
Separation
,” AIAA J.
0001-1452
26
(6
), pp.
641
–648
.33.
Launder
, B.
E.
and Shima
,
N.
,
1989, “Second-Moment
Closure for the Near-Wall Sublayer: Development and
Application
,” AIAA J.
0001-1452
27
(10
), pp.
1319
–1325
.34.
Yakhot
,
V.
,
Orszag
, S.
A.
, 1986,
“Renormalization Group Analysis of Turbulence: I. Basic
Theory
,” J. Sci. Comput.
0885-7474
1
, pp. 3
–51
.35.
Hussain
,
F.
,
1986, “Coherent
Structures and Turbulence
,” J. Fluid Mech.
0022-1120
173
, pp.
303
–356
.36.
Robinson
, S.
K.
, 1991,
“Coherent Motions in the Turbulent Boundary
Layer
,” Annu. Rev. Fluid Mech.
0066-4189
23
, pp. 601
–639
.37.
Jeong
,
J.
and
Hussain
,
F.
,
1995, “On the
Identification of a Vortex
,” J. Fluid Mech.
0022-1120
285
, pp. 69
–94
.38.
Hunt
, J. C.
R.
, Wray
, A.
A.
and Moin
,
P.
,
1988, “Eddies, Streams,
and Convergence Zones in Turbulent flows
,” Center for
Turbulence Research Report CTR-S88, Stanford Univ., pp.
193
–207
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.