Abstract

Axial flow in a rectangular channel containing a cylindrical rod has been simulated numerically by solving the unsteady Reynolds-averaged Navier–Stokes equations with a Reynolds stress model. The time- and phase-averaged mean velocity and turbulent stresses are in fair agreement with previous experimental results in a similar configuration. The study further documents the formation of quasi-periodic coherent structures in the form of vortex pairs and the important role that they play in transporting fluid across the gap region.

References

1.
Rowe
,
D. S.
,
Johnson
,
B. M.
and
Knudsen
,
J. G.
, 1974, “
Implications Concerning Rod Bundle Crossflow Mixing Based on Measurements of Turbulent Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310
17
, pp.
407
419
.
2.
Trupp
,
A. C.
and
Azad
,
R. S.
, 1975, “
The Structure of Turbulent Flow in Triangular Array Rod Bundles
,”
Nucl. Eng. Des.
0029-5493
32
(
1
), pp.
47
84
.
3.
Carajilescov
,
P.
and
Todreas
,
N. E.
, 1976, “
Experimental and Analytical Study of Axial Turbulent Flows in an Interior Subchannel of a Bare Rod Bundle
,”
ASME J. Heat Transfer
0022-1481
98
, pp.
262
268
.
4.
Seale
,
W. J.
, 1979, “
Turbulent Diffusion of Heat between Connected Flow Passages, Part 1: Outline of Problem and Experimental Investigation
,”
Nucl. Eng. Des.
0029-5493
54
, pp.
183
195
.
5.
Hooper
,
J. D.
, 1980, “
Developed Single Phase Turbulent Flow through a Square-Pitch Rod Cluster
,”
Nucl. Eng. Des.
0029-5493
60
, pp.
365
379
.
6.
Hooper
,
J. D.
and
Wood
,
D. H.
, 1984, “
Fully Developed Rod Bundle Flow over a Large Range of Reynolds Number
,”
Nucl. Eng. Des.
0029-5493
83
, pp.
31
46
.
7.
Hooper
,
J. D.
and
Rehme
,
K.
, 1984, “
Large-Scale Structural Effects in Developed Turbulent Flow through Closely-Spaced Rod Arrays
,”
J. Fluid Mech.
0022-1120
145
, pp.
305
337
.
8.
Rehme
,
K.
, 1987, “
The Structure of Turbulent Flow through Rod Bundles
,”
Nucl. Eng. Des.
0029-5493
99
, pp.
141
154
.
9.
Wu
,
X.
and
Trupp
,
A. C.
, 1993, “
Experimental Study on the Unusual Turbulence Intensity Distributions in Rod-to-Wall Gap Regions
,”
Exp. Therm. Fluid Sci.
0894-1777
6
, pp.
360
370
.
10.
Wu
,
X.
, 1995, “
On the Transport Mechanisms in Simulated Heterogeneous Rod Bundle Subchannels
,”
Nucl. Eng. Des.
0029-5493
158
, pp.
125
134
.
11.
Krauss
,
T.
and
Meyer
,
L.
, 1998, “
Experimental Investigation of Turbulent Transport of Momentum and Energy in a Heated Rod Bundle
,”
Nucl. Eng. Des.
0029-5493
180
, pp.
185
206
.
12.
Guellouz
,
M. S.
and
Tavoularis
,
S.
, 2000, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical rod - Part1: Reynolds-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777
23
, pp.
59
73
;
Guellouz
,
M. S.
and
Tavoularis
,
S.
, 2000, “
-Part 2: Phase-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777
23
, pp.
75
91
.
13.
Möller
,
S. V.
, 1991, “
On Phenomena of Turbulent Flow through Rod Bundles
,”
Exp. Therm. Fluid Sci.
0894-1777
4
, pp.
25
35
.
14.
Möller
,
S. V.
, 1992, “
Single-Phase Turbulent Mixing in Rod Bundles
,”
Exp. Therm. Fluid Sci.
0894-1777
5
, pp.
26
33
.
15.
Rehme
,
K.
, 1992, “
The Structure of Turbulence in Rod Bundles and the Implications on Natural Mixing between the Subchannels
,”
Int. J. Heat Mass Transfer
0017-9310
35
(
2
), pp.
567
581
.
16.
Meyer
,
L.
and
Rehme
,
K.
, 1994, “
Large-Scale Turbulence Phenomena in Compound Rectangular Channels
,”
Exp. Therm. Fluid Sci.
0894-1777
8
, pp.
286
304
.
17.
Meyder
,
R.
, 1975, “
Turbulent Velocity and Temperature Distribution in the Central Subchannel of Rod Bundles
,”
Nucl. Eng. Des.
0029-5493
35
, pp.
181
189
.
18.
Seale
,
W. J.
, 1982, “
Measurements and Predictions of Fully Developed Turbulent Flow in a Simulated Rod Bundle
,”
J. Fluid Mech.
0022-1120
123
, pp.
399
423
.
19.
Wu
,
X.
, 1994, “
Numerical Study on the Turbulence Structures in Closely Spaced Rod Bundle Subchannels
,”
Numer. Heat Transfer, Part A
1040-7782
25
, pp.
649
670
.
20.
Biemüller
,
M.
,
Meyer
,
L.
and
Rehme
,
K.
, 1996, “
Large Eddy Simulation and Measurement of the Structure of Turbulence in Two Rectangular Channels Connected by a Gap
,”
Engineering Turbulence Modeling and Experiments
, edited by
Rodi
and
Bergeles
, Vol.
3
, pp.
249
258
.
21.
Lee
,
K. B.
and
Jang
,
H. G.
, 1997, “
A Numerical Prediction on the Turbulent Flow in Closely Spaced Bare Rod Arrays by a Nonlinear k−ε Model
,”
Nucl. Eng. Des.
0029-5493
172
, pp.
351
357
.
22.
Tavoularis
,
S.
,
Madrane
,
A.
and
Vaillancourt
,
R.
, 2002, “
Numerical Simulation of Coherent Structures in Axial Flow through a Rectangular Channel containing a Cylindrical Rod
,”
Proc. 10th Ann. Conf. CFD Society of Canada
, June 9–11, Windsor, Ontario, pp.
105
110
.
23.
Chang
,
D.
, and
Tavoularis
,
S.
, 2004, “
Identification of Coherent Structures in Axial Flow in a Rectangular Channel Containing a Rod
,”
Proc. 12th Ann. Conf. CFD Society of Canada
, May 9-11, Ottawa, Ontario, pp.
303
309
.
24.
Barth
,
T. J.
and
Jespersen
,
D. C.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper89-0366,
AIAA 27th Aerospace Sciences Meeting
, Reno, Nevada.
25.
Rhie
,
C. M.
and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation
,”
AIAA J.
0001-1452
21
, pp.
1523
1532
.
26.
Van Doormal
,
J. P.
and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720
7
, pp.
147
163
.
27.
Gresho
,
P. M.
,
Lee
,
R. L.
and
Sani
,
R. L.
, 1980, “
On the Time-Dependent Solution of the Incompressible Navier–Stokes Equations in Two and Three Dimensions
,”
Recent Advances in Numerical Methods in Fluids
, edited by
C.
Taylor
and
K.
Morgan
,
Pineridge Press
, Swansea, U.K., Chap. 2.
28.
Wilcox
,
D. C.
, 2000,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
, La Canada, California, Chap. 6.
29.
Gibson
,
M. M.
and
Launder
,
B. E.
, 1978, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
0022-1120
86
, pp.
491
511
.
30.
Launder
,
B. E.
, 1989, “
Second-Moment Closure: Present… and Future?
,”
Int. J. Heat Fluid Flow
0142-727X
9
(
4
), pp.
963
985
.
31.
Lien
,
F. S.
and
Leschziner
,
M. A.
, 1994, “
Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure
,”
Comput. Fluids
0045-7930
23
(
8
), pp.
983
1004
.
32.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows including Separation
,”
AIAA J.
0001-1452
26
(
6
), pp.
641
648
.
33.
Launder
,
B. E.
and
Shima
,
N.
, 1989, “
Second-Moment Closure for the Near-Wall Sublayer: Development and Application
,”
AIAA J.
0001-1452
27
(
10
), pp.
1319
1325
.
34.
Yakhot
,
V.
,
Orszag
,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
0885-7474
1
, pp.
3
51
.
35.
Hussain
,
F.
, 1986, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
0022-1120
173
, pp.
303
356
.
36.
Robinson
,
S. K.
, 1991, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189
23
, pp.
601
639
.
37.
Jeong
,
J.
and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120
285
, pp.
69
94
.
38.
Hunt
,
J. C. R.
,
Wray
,
A. A.
and
Moin
,
P.
, 1988, “
Eddies, Streams, and Convergence Zones in Turbulent flows
,” Center for Turbulence Research Report CTR-S88, Stanford Univ., pp.
193
207
.
You do not currently have access to this content.