This paper presents experimental results documenting the effects of surface roughness and free-stream turbulence on boundary-layer transition. The experiments were conducted on a flat surface, upon which a pressure distribution similar to those prevailing on the suction side of low-pressure turbine blades was imposed. The test matrix consists of five variations in the roughness conditions, at each of three free-stream turbulence intensities (approximately 0.5%, 2.5%, and 4.5%), and two flow Reynolds numbers of 350,000 and 470,000. The ranges of these parameters considered in the study, which are typical of low-pressure turbines, resulted in both attached-flow and separation-bubble transition. The focus of the paper is on separation-bubble transition, but the few attached-flow test cases that occurred under high roughness and free-stream turbulence conditions are also presented for completeness of the test matrix. Based on the experimental results, the effects of surface roughness on the location of transition onset and the rate of transition are quantified, and the sensitivity of these effects to free-stream turbulence is established. The Tollmien–Schlichting instability mechanism is shown to be responsible for transition in each of the test cases presented. The root-mean-square height of the surface roughness elements, their planform size and spacing, and the skewness (bias towards depression or protrusion roughness) of the roughness distribution are shown to be relevant to quantifying the effects of roughness on the transition process.

1.
Bons
,
J. P.
,
McClain
,
S. T.
,
Taylor
,
R. P.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
J. Turbomach.
0889-504X,
123
, pp.
739
748
.
2.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
J. Turbomach.
0889-504X,
112
, pp.
175
180
.
3.
Kerho
,
M. F.
, and
Bragg
,
M. B.
, 1997, “
Airfoil Boundary-Layer Development and Transition with Large Leading-Edge Roughness
,”
AIAA J.
0001-1452,
35
, pp.
75
84
.
4.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 1 Characteristics of Wire Trips
,”
Aeronaut. J.
0001-9240,
90
, pp.
289
301
.
5.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 2 Characteristics of Single Spherical Trips
,”
Aeronaut. J.
0001-9240,
90
, pp.
357
67
.
6.
Gibbings
,
J. C.
,
Goksel
,
O. T.
, and
Hall
,
D. J.
, 1986, “
The Influence of Roughness Trips Upon Boundary-Layer Transition—Part 3 Characteristics of Rows of Spherical Transition Strips
,”
Aeronaut. J.
0001-9240,
90
, pp.
393
398
.
7.
Würz
,
W.
,
Herr
,
S.
,
Wörner
,
A.
,
Rist
,
U.
,
Wagner
,
S.
, and
Kachanov
,
Y. S.
, 2003, “
Three-Dimensional Acoustic-Roughness Receptivity of a Boundary Layer on an Airfoil: Experiment and Direct Numerical Simulations
,”
J. Fluid Mech.
0022-1120,
478
, pp.
135
63
.
8.
Kachanov
,
Y. S.
, 2000, “
Three-Dimensional Receptivity of Boundary Layers
,”
Eur. J. Mech. B/Fluids
0997-7546,
19
, pp.
723
44
.
9.
Lang
,
M.
,
Rist
,
U.
, and
Wagner
,
S.
, 2004, “
Investigations on Controlled Transition Development in a Laminar Separation Bubble by Means of LDA and PIV
,”
Exp. Fluids
0723-4864,
36
, pp.
43
52
.
10.
Cummings
,
M. J.
, and
Bragg
,
M. B.
, 1996, “
Boundary-Layer Transition Due to Isolated Three-Dimensional Roughness on Airfoil Leading Edge
,”
AIAA J.
0001-1452,
34
, pp.
1949
52
.
11.
Pinson
,
M. W.
, and
Wang
,
T.
, 1997, “
Effects of Leading-Edge Roughness on Fluid Flow and Heat Transfer in the Transitional Boundary Layer Over a Flat Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2813
23
.
12.
Wang
,
T.
, and
Rice
,
M. C.
, 2003, “
Effect of Elevated Free-Stream Turbulence on Transitional Heat Transfer over Dual-Scaled Rough Surfaces
,” GT-2003-38835,
Proc. ASME Turbo Expo
, Atlanta, GA.
13.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
J. Turbomach.
0889-504X,
113
, pp.
509
537
.
14.
Gostelow
,
J. P.
, and
Walker
,
G. J.
, 1991, “
Similarity Behavior in Transitional Boundary Layers Over a Range of Adverse Pressure Gradients and Turbulence Levels
,”
J. Turbomach.
0889-504X,
113
, pp.
617
625
.
15.
Hall
,
D. J.
, and
Gibbings
,
J. G.
, 1972, “
Influence of Stream Turbulence and Pressure Gradient Upon Boundary Layer Transition
,”
J. Mech. Eng. Sci.
0022-2542,
14
, pp.
134
146
.
16.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
, pp.
213
228
.
17.
Johnson
,
M. W.
, 1994, “
A Bypass Transition Model for Boundary Layers
,”
J. Turbomach.
0889-504X,
116
, pp.
759
764
.
18.
Schobeiri
,
M. T.
, and
Radke
,
R. E.
, 1994, “
Effects of Periodic-Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition along the Concave Surface of a Curved Plate
,” 94-GT-327,
Proc. ASME Turbo Expo
, The Hague, NL.
19.
Addison
,
J. S.
, and
Hodson
,
H. P.
, 1990, “
Unsteady Transition in an Axial-Flow Turbine: Part 1—Measurements on the Turbine Rotor
,”
J. Turbomach.
0889-504X,
112
, pp.
206
214
.
20.
Dong
,
Y.
, and
Cumpsty
,
N. A.
, 1990, “
Compressor Blade Boundary Layers: Part 2—Measurements With Incident Wakes
,”
J. Turbomach.
0889-504X,
112
, pp.
231
240
.
21.
Sharma
,
O. P.
,
Renaud
,
E.
,
Butler
,
T. L.
,
Milsaps
,
K.
Jr.
,
Dring
,
R. P.
, and
Joslyn
,
H. D.
, 1988, “
Rotor-Stator Interaction in Multi-Stage Axial-Flow Turbines
,” AIAA-88-3013.
22.
Yaras
,
M. I.
, 2002, “
Measurements of the Effects of Freestream Turbulence on Separation-Bubble Transition
,” GT-2002-30232,
Proc. ASME Turbo Expo
, Amsterdam, NL.
23.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Measurements and Prediction of Free-Stream Turbulence Effects on Attached-Flow Boundary-layer Transition
,” GT-2003-38261,
Proc. ASME Turbo Expo
, Atlanta, GA.
24.
Volino
,
R. J.
, and
Simon
,
T. W.
, 1997, “
Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 1—Mean Flow Results
,”
J. Heat Transfer
0022-1481,
119
, p.
420
.
25.
Johnson
,
M. W.
, 1998, “
Turbulent Spot Characteristics in Boundary Layers Subjected to Streamwise Pressure Gradient
,” ASME-98-GT-124,
Proc. ASME Turbo Expo
, Stockholm, Sweden.
26.
Narasimha
,
R.
, 1985, “
The Laminar-Turbulent Transition Zone in the Boundary Layer
,”
Prog. Aerosp. Sci.
0376-0421,
22
, pp.
29
80
.
27.
Solomon
,
W. G.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
J. Turbomach.
0889-504X,
118
, pp.
744
751
.
28.
Hatman
,
A.
, and
Wang
,
T.
, 1999, “
A Prediction Model for Separated-Flow Transition
,”
J. Turbomach.
0889-504X,
121
, pp.
594
602
.
29.
Horton
,
H. P.
, 1968, “
A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles
,” ARC CP-1073.
30.
Lou
,
W.
, and
Hourmouziadis
,
J.
, 2000, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,” 2000-GT-0270,
Proc. ASME Turbo Expo
, Munich, Germany.
31.
Volino
,
R. J.
, and
Hultgren
,
L. S.
, 2000, “
Measurements in Separated and Transitional Boundary-Layers Under Low Pressure Turbine Airfoil Conditions
,”
J. Turbomach.
0889-504X,
123
, pp.
189
197
.
32.
Taylor
,
G. I.
, 1938, “
Some Recent Developments in the Study of Turbulence
,”
Proc. Fifth Int. Cong. Appl. Mech.
33.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
, 2001, “
Conditional Sampling in a Transitional Boundary-Layer Under High Free-Stream Turbulence Conditions
,”
J. Fluids Eng.
0098-2202,
125
, pp.
28
37
.
34.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
, 1995, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis
,”
J. Fluids Eng.
0098-2202,
125
, pp.
251
266
.
35.
Volino
,
R. J.
, 2002, “
An Investigation of the Scales in Transitional Boundary Layers Under High Free-Stream Turbulence Conditions
,” GT-2002-30233,
Proc. ASME Turbo Expo
, Amsterdam, NL.
36.
Walker
,
G. J.
, 1989, “
Transitional Flow on Axial Compressor Blading
,”
AIAA J.
0001-1452,
27
, pp.
595
602
.
37.
Obremski
,
H. J.
,
Morkovin
,
M. V.
, and
Landahl
,
M.
, 1969, “
A Portfolio of Stability Characteristics of Incompressible Boundary Layers
,” AGARDograph 134.
38.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Modeling Transition in Separated and Attached Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
402
411
.
39.
Chong
,
T. P.
, and
Zhong
,
S.
, 2003, “
On the Three-Dimensional Structure of Turbulent Spots
,” GT-2003-38435,
Proc. ASME Turbo Expo
, Atlanta, GA.
You do not currently have access to this content.