A finite difference model is presented for viscous two dimensional flow of a uniform stream past an oscillating cylinder. A noninertial coordinate transformation is used so that the grid mesh remains fixed relative to the accelerating cylinder. Three types of cylinder motion are considered: oscillation in a still fluid, oscillation parallel to a moving stream, and oscillation transverse to a moving stream. Computations are made for Reynolds numbers between 1 and 100 and amplitude-to-diameter ratios from 0.1 to 2.0. The computed results correctly predict the lock-in or wake-capture phenomenon which occurs when cylinder oscillation is near the natural vortex shedding frequency. Drag, lift, and inertia effects are extracted from the numerical results. Detailed computations at a Reynolds number of 80 are shown to be in quantitative agreement with available experimental data for oscillating cylinders.

This content is only available via PDF.
You do not currently have access to this content.