Abstract

The exploration and development of oil and gas reservoirs present significant challenges in achieving objectives such as increased reserves, enhanced production, and improved efficiency. The protection of reservoirs has been internationally recognized as a crucial technology for enabling high output with minimal investment, specifically due to the susceptibility of the drilling and completion phases to severe damage. The resulting harm significantly reduces oil and gas production and may cause drilled wells to become nonproductive, thereby hampering oil and gas field discoveries. Over the past half-century, scholars have extensively researched and developed four generations of temporary plugging-based technologies for oil and gas reservoir protection, including shielding temporary plugging, fine temporary plugging, temporary plugging with physiochemical film, and biomimetic temporary plugging. These advancements have progressively enhanced the effectiveness of reservoir protection. However, the increasing depth and complexity of oil and gas exploration and development have rendered previous technologies inadequate in providing sufficient protection, resulting in amplified risks to drilling safety such as circulation loss, sloughing, obstruction, drill pipe sticking, and blowouts. To overcome these challenges, the development of drilling and completion fluid technologies capable of forming a liquid casing during drilling has emerged as a novel solution for safeguarding oil and gas reservoirs. The successful implementation of this technology on a large scale enables the efficient development of untapped oil and gas resources, marking a breakthrough in reservoir protection. It also identifies future research directions and has practical implications for field technicians and scientific professionals.

References

1.
Fancher
,
G. H.
,
Lewis
,
J. A.
, and
Barnes
,
K. B.
,
1933
, “
Some Physical Characteristics of Oil Sands. [Porosity, Permeability, and Screen Analysis]
,”
Penn. State Coll. Mineral Ind. Expt. Sta. Bull.
2.
Johnston
,
N.
, and
Beeson
,
C. M.
,
1945
, “
Water Permeability of Reservoir Sands
,”
Trans. AIME
,
160
(
1
), pp.
43
55
.
3.
Monaghan
,
P. H.
,
Salathiel
,
R. A.
,
Morgan
,
B. E.
, and
Kaiser
,
A.
,
1959
, “
Laboratory Studies of Formation Damage in Sands Containing Clays
,”
Soc. Pet. Eng.
,
216
(
1
).
4.
Van
,
J.
,
Jiang
,
G.
, and
Wu
,
X.
,
1997
, “
Evaluation of Formation Damage Caused by Drilling and Completion Fluids in Horizontal Wells
,”
J. Can. Pet. Technol.
,
36
(
5
).
5.
Zhang
,
H.
,
Jiang
,
G.
,
Bi
,
H.
, and
Zhu
,
K.
,
2018
, “
Research on Protecting Formation Low-Damage Workover Fluid in Low Permeability Reservoir
,”
Int. J. Nanosci.
,
18
(
6
).
6.
Yan
,
J.
,
Guancheng
,
J.
, and
Xueshi
,
W.
,
1995
, “
Laboratory Evaluation Procedures of Formation Damage Induced by Completion Fluids in Horizontal Wells
,”
China Oil Gas
,
2
(
3
), pp.
35
38
.
7.
Fraser
,
L. J.
,
Reid
,
P. I.
,
Williamson
,
L. D.
, and
Enriquez
,
F. P.
, Jr
,
1999
, “
Formation-Damaging Characteristics of Mixed Metal Hydroxide Drill-in Fluids and a Comparison With Polymer-Base Fluids
,”
SPE Drill. Complet.
,
14
(
3
), pp.
178
184
.
8.
Jiang
,
G. C.
,
He
,
Y. B.
,
Cui
,
W. G.
,
Yang
,
L. L.
, and
Ye
,
C. X.
,
2019
, “
A Saturated Saltwater Drilling Fluid Based on Salt-Responsive Polyampholytes
,”
Pet. Exp. Dev.
,
46
(
2
), pp.
401
406
.
9.
Gja
,
B.
,
Xna
,
B.
,
Wla
,
B.
,
Xqa
,
B.
, and
Xla
,
C.
,
2020
, “
Super-Amphiphobic, Strong Self-Cleaning and High-Efficiency Water-Based Drilling Fluids
,”
Pet. Exp. Dev.
,
47
(
2
), pp.
421
429
.
10.
Yan
,
J.
,
Jiang
,
G.
,
Wang
,
F.
,
Fan
,
W.
, and
Su
,
C.
,
1996
, “
Characterization and Prevention of Formation Damage During Horizontal Drilling
,”
SPE Drill. Complet.
,
13
(
4
), pp.
739
747
.
11.
Zhang
,
J.
, and
Jienian
,
Y.
,
2005
, “
Optimal Selection of Particle Size Distribution of Temporary Plugging Agent for Drilling and Completion Fluid
,”
Oilfield Chem.
,
22
(
1
), pp.
1
5
. (in Chinese).
12.
Abrams
,
A.
,
1977
, “
Mud Design to Minimize Rock Impairment Due to Particle Invasion
,”
J. Pet. Technol.
,
29
(
5
), pp.
586
592
.
13.
Luo
,
X.
, and
Pingya
,
L.
,
1992
, “
Research on the Application of Shielding Temporary Plugging Technology in Reservoir Protection
,”
Drill. Fluid Complet. Fluid
,
9
(
2
), pp.
19
27
. (in Chinese).
14.
Mei
,
W.
,
Shu
,
S.
,
Lai
,
T.
,
Liu
,
W.
, and
Hu
,
G.
,
1996
, “
Pore and Throat Network Model and Its Application to the Optimal Selection of Temporary Plugging Particles
,”
SPE Formation Damage Control Symposium
,
Lafayette, IN
,
Feb. 14–15
.
15.
Chang
,
F. F.
, and
Civan
,
F.
,
1992
, “
Predictability of Formation Damage by Modeling Chemical and Mechanical Processes
,”
SPE Formation Damage Control Symposium
,
Lafayette, IN
,
Feb. 26–27
.
16.
Sydansk
,
R. D.
,
1993
, “
Acrylamide-Polymer/chromium (iii)Carboxylate Gels for Near Wellbore Matrix Treatments
,”
SPE Adv. Technol.
,
1
(
1
), pp.
146
152
.
17.
Xu
,
T. T.
,
Lou
,
Y. J.
, and
Shen
,
W.
,
1997
,
Technology of Lost Circulation Prevention and Control During Drilling Engineering
,
Petroleum Industry Press
,
Beijing
.
18.
Di
,
J.
, and
Sharma
,
M. M.
,
1996
, “
Mud Induced Formation Damage in Fractured Reservoirs
,”
SPE Drill. Complet.
,
11
(
1
), pp.
11
16
.
19.
Guoxin
,
Z.
,
Shanbo
,
Z.
,
Gongsheng
,
C.
, et al
,
2001
, “
Application of Shielding Temporary Plugging Technology in Adjustment Wells of Shuanghe Oilfield
,”
Pet. Geol. Eng.
,
15
(
1
), pp.
33
37
.
20.
Yin
,
J. L.
,
Liu
,
H.
,
Chi
,
X. M.
, et al
,
2017
, “
Experimental Study and Field Test of Degradable Fiber Based Temporary Plugging and Diversion Fracturing Technology
,”
Nat. Gas. Explor. Dev.
,
40
(
3
), pp.
113
119
.
21.
Li
,
X. Y.
,
Li
,
C. Y.
,
Shen
,
X.
,
Zhao
,
B.
,
Zhang
,
X.
,
Wang
,
S.
, and
Guo
,
J. C.
,
2021
, “
Research of Acid Fracturing With Multistage Temporary Plugging Technology in Tahe Oilfield Horizontal Wells
,”
Drill. Prod. Technol.
,
44
(
3
), pp.
52
55
.
22.
Zhong
,
Y.
,
Zhang
,
H.
,
Feng
,
Y.
,
Li
,
J.
,
Yang
,
Y.
, and
She
,
J.
,
2022
, “
A Composite Temporary Plugging Technology for Hydraulic Fracture Diverting Treatment in Gas Shales: Using Degradable Particle/Powder Gels (DPGs) and Proppants as Temporary Plugging Agents
,”
J. Petrol. Sci. Eng.
,
216
, p.
110851
.
23.
Cong
,
S. N.
,
Li
,
J. R.
,
Liu
,
W. D.
,
Shi
,
Y.
,
Li
,
Y. L.
,
Zheng
,
K.
,
Luo
,
X.
, and
Luo
,
W. B.
,
2023
, “
EOR Mechanism of Fracture Oil Displacement Agent for Ultra-Low Permeability Reservoir
,”
Energy Rep.
,
9
, pp.
4893
4904
.
24.
Guancheng
,
J.
,
Jienian
,
Y.
,
Fuhua
,
W.
, and
Shuqi
,
W.
,
1999
, “
Application of New Shielding Temporary Plugging Technology in Dawanqi Area
,”
Pet. Drill. Tech.
,
27
(
6
), pp.
21
23
. (in Chinese).
25.
Tongtai
,
X.
,
Yonghao
,
C.
,
Jinghai
,
F.
, et al
,
2003
, “
Discussion on Broad-Spectrum Shielding and Temporary Plugging Technology to Protect Oil and Gas Reservoirs
,”
Drill. Fluid Complet. Fluid
,
20
(
2
), pp.
39
41
.
26.
Lijun
,
Y.
,
Qigui
,
T.
,
Yili
,
K.
,
Xiwen
,
Z.
,
Chengyuan
,
X.
, and
Chong
,
L.
,
2018
, “
Optimizing the Particle Size Distribution of Drill-In Fluids Based on Fractal Characteristics of Porous Media and Solid Particles
,”
J. Pet. Sci. Eng.
,
171
, pp.
1223
1231
.
27.
Kaeuffer
,
M.
,
1973
, “
Determination de L'Optimum de Remplissage Granulometrique et Quelques Proprietes S’y Rattachant
,”
Congres de I'AFTPV
,
Rouen
,
October
.
28.
Dick
,
M. A.
,
Heinz
,
T. J.
,
Svoboda
,
C. F.
, and
Aston
,
M.
,
2000
, “
Optimizing the Selection of Bridging Particles for Reservoir Drilling Fluids
,”
Soc. Pet. Eng.
29.
Yan
,
J.
, and
Feng
,
W.
,
2006
, “
Design of Drill-in Fluids by Optimizing Selection of Bridging Particles
,”
International Oil & Gas Conference and Exhibition in China
,
Beijing
.
30.
Chellappah
,
K.
, and
Aston
,
M.
,
2012
, “
A new Outlook on the Ideal Packing Theory for Bridging Solids
,”
SPE International Symposium on Formation Damage
,
Lafayette, IN
,
Feb. 15–17
.
31.
Hands
,
N.
,
Kowbel
,
K.
,
Maikranz
,
S.
, and
Nouris
,
R.
,
1998
, “
Drill-In Fluid Reduces Formation Damage, Increases Production Rates
,”
Oil Gas J.
,
96
(
28
), pp.
65
69
.
32.
Mandelbrot
,
B. B.
,
1982
, “
The Fractal Geometry of Nature
,”
Am. J. Phys.
,
51
(
3
).
33.
Kefi
,
S.
,
Lee
,
J.
,
Shindgikar
,
N.
,
Brunet-Cambus
,
C.
,
Vidick
,
B.
, and
Diaz
,
N.
,
2010
, “
Optimizing in Four Steps Composite Lost-Circulation Pills Without Knowing Loss Zone Width
,”
IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition
,
Vietnam
.
34.
Vickers
,
S.
,
Cowie
,
M.
,
Jones
,
T.
, and
Twynam
,
A.
,
2006
, “
A New Methodology That Surpasses Current Bridging Theories to Efficiently Seal a Varied Pore Throat Distribution as Found in Natural Reservoir Formations
,”
Wierntnictwo Nafta Gaz
,
23
(
1
), pp.
501
515
.
35.
Yang
,
C.
,
Zhou
,
F.
,
Feng
,
W.
,
Tian
,
Z.
,
Yuan
,
L.
, and
Gao
,
L.
,
2019
, “
Plugging Mechanism of Fibers and Particulates in Hydraulic Fracture
,”
J. Pet. Sci. Eng.
,
176
, pp.
396
402
.
36.
Jiang
,
G.
,
Hu
,
C.
,
Xiong
,
Y.
, et al
,
2005
, “
Research on Drilling and Completion Fluid System for Broad-Spectrum Temporary Plugging and Protection of Oil and Gas Reservoirs
,”
Drill. Prod. Technol.
,
28
(
5
), pp.
101
104
.
37.
Sun
,
J.
,
2006
,
Research on Membrane Forming Technology of Water-Based Drilling and Completion Fluid
,
Southwest Petroleum University
,
Chengdu, China
.
38.
Staverman
,
A. J.
,
1952
, “
Non-Equilibrium Thermodynamics of Membrane Processes
,”
Trans. Faraday Soc.
,
48
, p.
176
.
39.
Van
,
E.
,
Hale
,
A. H.
, and
Mody
,
F. K.
,
1995
, “
Manipulation of Coupled Osmotic Flows for Stabilisation of Shales Exposed to Water-Based Drilling Fluids
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 22–25
.
40.
Ewy
,
R. T.
, and
Stankovich
,
R. J.
,
2000
, “
Pore Pressure Change Due to Shale-Fluid Interactions: Measurements Under Simulated Wellbore Conditions
,”
North American Rock Mechanics Symposium
,
Seattle, WA
,
July 31–Aug. 3
.
41.
Zhang
,
J.
,
Al-Bazali
,
T. M.
,
Chenevert
,
M. E.
, and
Sharma
,
M. M.
,
2006
, “
Factors Controlling the Membrane Efficiency of Shales When Interacting With Water-Based and Oil-Based Muds
,”
SPE Drill. Complet.
,
23
(
2
), pp.
150
158
.
42.
Osuji
,
C. E.
,
Chenevert
,
M. E.
, and
Sharma
,
M. M.
,
2008
, “
Effect of Porosity and Permeability on the Membrane Efficiency of Shales
,”
Soc. Pet. Eng.
43.
Jiang
,
G.
,
Bao
,
M.
,
Ji
,
C.
,
Ma
,
X.
, and
Yao
,
Y.
,
2010
, “
Study and Application on the Oil-Film Method Used for Reservoir Protection Drilling and Completion Fluid Systems
,”
J. Dispers. Sci. Technol.
,
31
(
9
), pp.
1273
1277
.
44.
Jiang
,
G. C.
,
Ji
,
C. F.
,
Ma
,
X. P.
,
Yao
,
Y. H.
, and
Bao
,
M. T.
,
2009
, “
Study and Application of Reservoir Protection Fluid System For Drilling & Completion Using Oil-Film Method
,”
8th European Formation Damage Conference, Society of Petroleum Engineers
. Paper No. SPE 119811.
45.
Santos
,
H.
,
Villas-Boas
,
M.
,
Lomba
,
R.
,
,
C. H. M.
,
Oliveira
,
S. F.
, and
Costa
,
J. F.
,
1999
, “
API Filtrate and Drilling Fluid Invasion: Is There Any Correlation?
,”
Soc. Pet. Eng.
46.
Labenski
,
F.
,
Reid
,
P.
, and
Santos
,
H.
,
2003
, “
Drilling Fluids Approaches for Control of Wellbore Instability in Fractured Formations
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition
,
Abu Dhabi, UAE
,
Oct. 20–22
.
47.
Helio
,
S.
, and
Jesus
,
O.
,
2002
, “
No-Damage Drilling: How to Achieve This Challenging Goal?
IADC/SPE Asia Pacific Drilling Technology
,
Jakarta, Indonesia
,
Sept. 9–11
.
48.
Semmelbeck
,
M. E.
,
Dewan
,
J. T.
, and
Holditch
,
S. A.
,
1995
, “
Invasion-Based Method for Estimating Permeability From Logs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 22–25
.
49.
Reid
,
P.
, and
Santos
,
H.
, “
Novel Drilling, Completion and Workover Fluids for Depleted Zones: Avoiding Losses, Formation Damage and Stuck Pipe
,”
Soc. Pet. Eng.
50.
Helio
,
S.
, and
Roberto
,
P.
,
2001
, “
What Have We Been Doing Wrong in Wellbore Stability?
SPE Latin American and Caribbean Petroleum Engineering Conference
,
Buenos Aires, Argentina
,
Mar. 25–28
.
51.
Schiemmer
,
R.
,
Friedheim
,
J.
,
Growcock
,
F.
,
Bloys
,
J.
,
Headley
,
J. A.
, and
Polnaszek
,
S. C.
,
2002
, “
Membrane Efficiency in Shale—An Empirical Evaluation of Drilling Fluid Chemistries and Implications for Fluid Design
,”
Soc. Pet. Eng.
52.
Mody
,
F. K.
,
Tare
,
U. A.
,
Tan
,
C. P.
,
Drummond
,
C. J.
, and
Wu
,
B.
,
2002
, “
Development of Novel Membrane Efficient Water-Based Drilling Fluids Through Fundamental Understanding of Osmotic Membrane Generation in Shales
,”
Soc. Pet. Eng.
53.
Lei
,
G.
,
2004
,
Research on Water-Based Polymer Film-Forming Drilling and Completion Fluid
,
Southwest Petroleum University
,
Chengdu
.
54.
Pu
,
X.
,
Lei
,
G.
,
Luo
,
X.
, et al
2005
, “
Research on Isolation Membrane Theory and Film-Forming Drilling and Completion Fluids
,”
Drill. Fluid Complet. Fluid
,
22
(
6
), pp.
1
4
.
55.
He
,
M.
,
Pu
,
X.
,
Su
,
J.
, et al
, “
Research on Reservoir Protection Technology of Water-Based Film-Forming Drilling and Completion Fluid
,”
Drill. Prod. Technol.
,
33
(
5
), pp.
93
97
. (in Chinese).
56.
Su
,
J.
,
Pu
,
X.
,
Ren
,
M.
, et al
, “
Research on Organic/Inorganic Nano-Composite Emulsion Film-Forming Agent for Drilling and Completion Fluid
,”
Oilfield Chem.
,
28
(
3
), pp.
237
240
. (in Chinese).
57.
Wu
,
J.
,
Li
,
X.
,
Liu
,
Y.
, et al
, “
Application of Water-Base Semipermeable Membrane Drilling Fluid Technology in Sebei Natural Gas Field
,”
Soc. Pet. Eng.
58.
Bai
,
X.
, and
Pu
,
X.
, “
Formation Mechanisms of Semi-Permeable Membranes and Isolation Layers at the Interface of Drilling Fluids and Borehole Walls
,”
Acta Petrol. Sin.
,
31
(
85
), pp.
4
7
.
59.
Li
,
Y.
,
Wang
,
M. S.
,
Tan
,
X. F.
,
An
,
Y. H.
,
Liu
,
H. N.
,
Gao
,
K.
, and
Guo
,
M. Y.
, “
Application of Hybrid Silicate as a Film-Forming Agent in High-Temperature Water-Based Drilling Fluids
,”
ACS Omega
,
31
(
6
), pp.
20577
20589
.
60.
Sun
,
Y. X.
,
Teng
,
F.
, and
Zhao
,
J. Y.
,
2014
, “
Study and Application of Polymer Film-Forming Shielding Plugging Drilling Fluid System
,”
J. Pet. Eng.
,
2014
, pp.
1
5
.
61.
Oort
,
E. V.
, and
Vargo
,
R.
,
2008
, “
Improving Formation-Strength Tests and Their Interpretation
,”
SPE Drill. Complet.
,
23
(
3
), pp.
284
294
.
62.
Al-Bazali
,
T. M.
,
2005
, “
Experimental Study of the Membrane Behavior of Shale During Interaction With Water-Based and Oil-Based Muds
,”
Electronic.
63.
Pedrosa
,
C.
,
Camilo
,
H.
,
Bjørnar
,
L.
,
Nils van der Tuuk
,
O.
,
Jan David
,
Y.
, and
Arild
,
S.
,
2023
, “
Experimental Bench-Scale Study on Cuttings-Bed Erosion in Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
053101
.
64.
Wagle
,
V.
,
AlYami
,
A.
,
Aljubran
,
M.
, and
Al-Bahrani
,
H.
,
2023
, “
High-Density Drilling Fluids for Managed Pressure Drilling: Lab Development and Field Trial
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
023001
.
65.
Hemphill
,
T.
,
Abousleiman
,
Y. N.
,
Tran
,
M. H.
,
Hoang
,
S.
, and
Nguyen
,
V.
,
2008
, “
Direct Strength Measurements of Shale Interaction With Drilling Fluids
,”
Soc. Pet. Eng.
66.
Bybee
,
K.
,
2007
, “
Membrane Efficiency of Shales Interacting With Water-Based and Oil-Based Muds
,”
J. Pet. Technol.
,
59
(
11
), pp.
79
80
.
67.
Jiang
,
G. C.
,
Li
,
Y. Y.
,
Xu
,
W. X.
,
Kong
,
Y.
, and
Feng
,
C. Y.
,
2011
, “
Study and Application of Formation Protection Drilling-in Completion Fluid in Developing low and Extra Low Permeability Reservoirs
,”
2011 International Conference on Mechanical, Industrial, and Manufacturing Engineering (MIME 2011)
,
Perth, Australia
,
Oct. 25–27
.
68.
Jiang
,
G.
,
Li
,
Y.
,
Kong
,
Y.
,
Ling
,
L.
,
Feng
,
C.
, and
Zeng
,
C.
,
2015
, “
Application of Acrylate Copolymers in the Drilling-In Completion Fluid for Low and Extra Low Permeability Reservoirs
,”
Energy Sources
,
37
(
5–8
), pp.
633
641
.
69.
Jiang
,
G. C.
,
Xuan
,
Y.
,
Wang
,
X.
,
Zhang
,
S.
,
An
,
Y. X.
, and
Sun
,
J. S.
, “
A Preparation Method of a Wettability Reversal Agent
,” US 9, 296, 936.
70.
Jiang
,
G. C.
,
Xuan
,
Y.
,
Wang
,
X.
,
Zhang
,
S.
, and
An
,
Y. X.
, “
Reservoir Protecting Agent Composition, Drilling Fluid for Middle Permeability Reservoirs and Use Thereof
,” US 9, 353, 305.
71.
Feng
,
C. Y.
,
Kong
,
Y.
,
Jiang
,
G. C.
, and
Zhang
,
Y. Z.
,
2012
, “
Effect of Organosilicon-Acrylic Latex on Wettability Alteration to Intermediate Gas-Wetting of Gas Reservoirs
,”
Transp. Porous Media
,
92
(
3
).
72.
Jiang
,
G. C.
,
Xuan
,
Y.
,
Wang
,
X.
,
Song
,
R. R.
,
Wu
,
X. Z.
,
Chen
,
J. B.
,
Yang
,
W. O.
,
Luo
,
T. T.
, and
Wang
,
L.
, “
Amphiphilic Reservoir Protecting Agent and Reparation Method Thereof and Drilling Fluid
,” US 9399692.
73.
Jiang
,
G. C.
,
Xuan
,
Y.
,
Wang
,
X.
,
Zhang
,
S.
,
An
,
Y. X.
, and
Sun
,
J. S.
, “
Protecting Agent Composition for High Ultra-High Permeability Reservoirs and Drilling Fluid and Use Thereof
,” US 9,267,068.
74.
Li
,
Y.
,
Jiang
,
G.
,
Xu
,
W.
,
Li
,
L.
,
Jiang
,
C.
,
Ke
,
S.
, and
Yu
,
Y.
,
2015
, “
The Effects of Gas-Wetting on the Electrical Properties of Condensate Gas Reservoir Cores
,”
Energy Sources, Part A: Recov. Util. Environ. Eff.
,
37
(
16
), pp.
1766
1773
.
75.
Jiang
,
G.
,
Li
,
Y.
,
Ling
,
L.
,
Weixing
,
X.
, and
Jiang
,
S.
,
2015
, “
The Relation Between (Meth)Fluoroacrylate Copolymer Structure and Reservoir Rock Wettability
,”
Energy Sources
,
37
(
9–12
), pp.
947
955
.
76.
Yang
,
Z.
,
Xie
,
S.
,
Xing
,
X.
, et al
,
2016
, “
Quantitative Evaluation and Factors of Gas-Wetness in Gas/Liquid/Solid Systems
,”
Energy Sources, Part A: Recov. Util. Environ. Eff.
,
38
(
1/4
), pp.
597
605
.
77.
Jiang
,
G.
,
Xuan
,
Y.
,
Wang
,
X.
,
Zhang
,
S.
, and
An
,
Y.
, “
Reservoir Protective Agent Compositions and Broad-Spectrum Drilling and Completion Fluids and Their Applications
,” ZL 201510072867.2.
78.
Jiang
,
G. C.
,
Xuan
,
Y.
,
Wu
,
X.
,
Junbin
,
C.
,
Ouyang
,
W.
, and
Taotao
,
L.
,
2016
, “
Method for Preparation of Biomimetic Polymer for Stabilizing Wellbore and Drilling Fluid
,” US9410068.
79.
Jiang
,
G.
,
Xuan
,
C.
,
Zhang
,
Y.
,
Xianzhu Wu
,
X.
, and
Ouyang
,
W.
,
2016
, “
Bionic Drilling Fluid and Preparation Method Thereof
,” US9528041.
80.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Mahmoud
,
M.
,
Shakil Hussain
,
S. M.
,
Abouelresh
,
M.
, and
Al-Harthi
,
M. A.
,
2019
, “
Organophilic Clay-Based Drilling Fluids for Mitigation of Unconventional Shale Reservoirs Instability and Formation Damage
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
093102
.
81.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
, and
Al-Attar
,
H.
,
2022
, “
A Numerical Approach to Investigate the Impact of Acid-Asphaltene Sludge Formation on Wormholing During Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063001
.
82.
Madadizadeh
,
A.
,
Sadeghein
,
A.
, and
Riahi
,
S.
,
2022
, “
A Comparison of Different Nanoparticles’ Effect on Fine Migration by Low Salinity Water Injection for Oil Recovery: Introducing an Optimum Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013005
.
83.
Murtaza
,
M.
,
Tariq
,
Z.
,
Mahmoud
,
M.
,
Kamal
,
M. S.
, and
Al-Shehri
,
D.
,
2021
, “
Anhydrite (Calcium Sulfate) Mineral as a Novel Weighting Material in Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
023002
.
84.
Xia
,
T.
,
Feng
,
Q.
,
Wang
,
S.
,
Shu
,
Q.
,
Zhang
,
Y.
, and
Suni
,
Y.
,
2022
, “
A Numerical Study of Particle Migration in Porous Media During Produced Water Reinjection
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073002
.
85.
Alvi
,
M. A. A.
,
Belayneh
,
M.
,
Fjelde
,
K. K.
,
Saasen
,
A.
, and
Bandyopadhyay
,
S.
,
2021
, “
Effect of Hydrophobic Iron Oxide Nanoparticles on the Properties of Oil-Based Drilling Fluid
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
043001
.
86.
Ofei
,
T. N.
,
Lund
,
B.
,
Saasen
,
A.
, and
Sangesland
,
S.
,
2022
, “
The Effect of Oil-Water Ratio on Rheological Properties and Sag Stability of Oil-Based Drilling Fluids
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073008
.
87.
Wang
,
C.
,
Wang
,
Y.
,
Kuru
,
E.
,
Chen
,
E.
,
Xiao
,
F.
,
Chen
,
Z.
, and
Yang
,
D.
,
2021
, “
A New Low-Damage Drilling Fluid for Sandstone Reservoirs With Low-Permeability: Formulation Evaluation, and Applications
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053004
.
You do not currently have access to this content.