Abstract

Carbonates are characterized by low oil recovery due to their positive surface charge and consequent high affinity to negatively charged crude oil, rendering them to a state of mixed-to-oil wettability. Thus, a better understanding of the rock/brine/oil interactions and their effect on potential-determining ions (PDIs) adsorption/desorption during engineered water injection is needed for realistic and representative estimations of oil recovery. Therefore, this study reveals a novel approach to capture various interactions and better predict the effect of PDIs adsorption/desorption as well as the concentrations of various ionic species in the effluent using Phreeqc. In this work, we determined the adsorption/desorption of PDIs for the first time using surface-complexation reactions and then we validated our results with experimental data from the literature. Our results revealed that the presence of PDIs and their respective adsorption/desorption results in surface charge decrease and increase in pH. Also, this study found that ionic adsorption depends on ionic strength and species activity where calcium adsorption remained constant while magnesium and sulfate adsorptions varied with ionic strength. Moreover, magnesium ion was found to be the most sensitive ionic species to temperature as opposed to calcium and sulfate ions. In addition, sulfate spiking and dilution decrease the sulfate adsorption since the sulfate starts reacting with magnesium and forming complexes. Additionally, deionized water resulted in the highest charge decrease and pH increase with related incremental oil recovery. The adsorption/desorption of ions is case-dependent and thus, the findings cannot be generalized.

References

1.
Sheng
,
J. J.
,
2011
,
Modern Chemical Enhanced Oil Recovery
,
Gulf Professional Publishing
,
Boston, MA
.
2.
Khurshid
,
I.
, and
Afgan
,
I.
,
2022
, “
Geochemical Investigation of Electrical Conductivity and Electrical Double Layer Based Wettability Alteration During Engineered Water Injection in Carbonates
,”
J. Pet. Sci. Eng.
,
215
, p.
110627
.
3.
Buckley
,
J.
, and
Liu
,
Y.
,
1998
, “
Some Mechanisms of Crude Oil/Brine/Solid Interactions
,”
J. Pet. Sci. Eng.
,
20
(
3
), pp.
155
160
.
4.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
, and
Al-Attar
,
H.
,
2022
, “
A Numerical Approach to Investigate the Impact of Acid-Asphaltene Sludge Formation on Wormholing During Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063001
.
5.
Khurshid
,
I.
,
Fujii
,
Y.
, and
Choe
,
J.
,
2015
, “
Analytical Model to Determine Optimal Fluid Injection Time Ranges for Increasing Fluid Storage and Oil Recovery: A Reservoir Compaction Approach
,”
J. Pet. Sci. Eng.
,
135
, pp.
240
245
.
6.
Standnes
,
D. C.
, and
Austad
,
T.
,
2003
, “
Wettability Alteration in Carbonates: Interaction Between Cationic Surfactant and Carboxylates As a Key Factor in Wettability Alteration From Oil-Wet to Water-Wet Condition
,”
Colloid Sur. A Physicochem. Eng. Asp.
,
216
(
1–3
), pp.
243
259
.
7.
Khurshid
,
I.
, and
Choe
,
J.
,
2018
, “
An Analytical Model for Re-Dissolution of Deposited Asphaltene in Porous Media During CO2 Injection
,”
Int. J. Oil Gas Coal Technol.
,
18
(
3–4
), pp.
338
352
.
8.
Khurshid
,
I.
, and
Choe
,
J.
,
2015
, “
Analysis of Asphaltene Deposition, Carbonate Precipitation, and Their Cementation in Depleted Reservoirs During CO2 Injection
,”
Greenh. Gases Sci. Technol.
,
5
(
5
), pp.
657
667
.
9.
Khurshid
,
I.
, and
Choe
,
J.
,
2016
, “
Analysis of Carbon Dioxide Temperature, Its Thermal Disturbance, and Evaluating of the Formation Damages During Its Injection in Shallow, Deep, and High-Temperature Reservoirs
,”
Int. J. Oil Gas Coal Technol.
,
11
(
2
), pp.
141
153
.
10.
Høgnesen
,
E.
,
Strand
,
S.
, and
Austad
,
T.
,
2005
, “
Waterflooding of Preferential Oil-Wet Carbonates: Oil Recovery Related to Reservoir Temperature and Brine Composition
,”
Paper SPE 94166, 67th SPE Europec/EAGE Annual Conference
,
Madrid, Spain
.
11.
Khurshid
,
I.
,
Al-Attar
,
H.
, and
Alraeesi
,
A. R.
,
2018
, “
Modeling Cementation in Porous Media During Waterflooding: Asphaltene Deposition, Formation Dissolution, and Their Cementation
,”
J. Pet. Sci. Eng.
,
161
, pp.
359
367
.
12.
Zhang
,
P. M.
, and
Austad
,
T.
,
2006
, “
Wettability and Oil Recovery From Carbonates: Effects of Temperature and Potential Determining Ions
,”
Colloid Sur. A Physicochem. Eng. Asp.
,
279
(
1–3
), pp.
179
187
.
13.
Zhang
,
P. M.
,
Tweheyo
,
M. T.
, and
Austad
,
T.
,
2007
, “
Wettability Alteration and Improved Oil Recovery by Spontaneous Imbibition of Seawater Into Chalk: Impact of Potential Determining Ions Ca2+, Mg2+, and SO42−
,”
Colloid Sur. A Physicochem. Eng. Asp.
,
301
(
1–3
), pp.
199
208
.
14.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Geochemical Investigation of CO2 Injection in Oil and Gas Reservoirs of Middle East to Estimate the Formation Damage and Related Oil Recovery
,”
Energies
,
14
(
22
), p.
7676
.
15.
Hiorth
,
A.
,
Cathles
,
L. M.
, and
Madland
,
M. V.
,
2010
, “
The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability
,”
Transp. Porous Media
,
85
(
1
), pp.
1
21
.
16.
Yousef
,
A. A.
,
Al-Saleh
,
A.
,
Al-Kaabi
,
A.
, and
Al-Jawfi
,
M.
,
2011
, “
Laboratory Investigation of the Impact of Injection-Water Salinity and Ionic Content on Oil Recovery From Carbonate Reservoirs
,”
SPE Reserv. Evaluat. Eng.
,
14
(
5
), pp.
578
593
.
17.
Austad
,
T.
,
Shariatpanahi
,
S.
,
Strand
,
S.
,
Black
,
C.
, and
Webb
,
K.
,
2012
, “
Conditions for a Low-Salinity Enhanced Oil Recovery (EOR) Effect in Carbonate Oil Reservoirs
,”
Energy Fuels
,
26
(
1
), pp.
569
575
.
18.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Investigation of Water Composition on Formation Damage and Related Energy Recovery From Geothermal Reservoirs: Geochemical and Geomechanical Insights
,”
Energies
,
14
(
21
), p.
7415
.
19.
AlHammadi
,
M.
,
Mahzari
,
P.
, and
Sohrabi
,
M.
,
2018
, “
Fundamental Investigation of Underlying Mechanisms Behind Improved Oil Recovery by Low Salinity Water Injection in Carbonate Rocks
,”
Fuel
,
220
, pp.
345
357
.
20.
Mahani
,
H.
,
Keya
,
A. L.
,
Berg
,
S.
, and
Nasralla
,
R.
,
2017
, “
Electrokinetics of Carbonate/Brine Interface in Low-Salinity Waterflooding: Effect of Brine Salinity, Composition, Rock Type, and pH on ζ-Potential and a Surface-Complexation Model
,”
SPE J.
,
22
(
1
), pp.
53
68
.
21.
Korrani
,
A. K. N.
, and
Jerauld
,
G. R.
,
2019
, “
Modeling Wettability Change in Sandstones and Carbonates Using a Surface-Complexation-Based Method
,”
J. Pet. Sci. Eng.
,
174
, pp.
1093
1112
.
22.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Alameri
,
W.
,
2020
, “
Influence of Water Composition on Formation Damage and Related Oil Recovery in Carbonates: A Geochemical Study
,”
J. Pet. Sci. Eng.
,
107715
(
195
), pp.
1
21
.
23.
Folk
,
R. L.
,
1959
, “
Practical Petrographic Classification of Limestones
,”
AAPG Bull.
,
43
(
1
), pp.
1
38
.
24.
Levitt
,
D. B.
,
Weatherl
,
R. K.
,
Harris
,
H. W.
,
McNeil
,
R. I.
,
Didier
,
M.
,
Loriau
,
M.
,
Gaucher
,
E. C.
, and
Bourrel
,
M.
,
2015
, “
Adsorption of EOR Chemicals Under Laboratory and Reservoir Conditions, Part 1—Iron Abundance and Oxidation State
,”
IOR 2015-18th European Symposium on Improved Oil Recovery
,
Dresden, Germany
,
Apr. 14–16
.
25.
Kosmulski
,
M.
,
2002
, “
The pH-Dependent Surface Charging and the Points of Zero Charge
,”
J. Colloid Interface Sci.
,
253
(
1
), pp.
77
87
.
26.
Stumm
,
W.
, and
Morgan
,
J. J.
,
1996
,
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
, 3rd ed.,
Wiley
,
New York
.
27.
Na
,
C.
,
Kendall
,
T. A.
, and
Martin
,
S. T.
,
2007
, “
Surface-Potential Heterogeneity of Reacted Calcite and Rhodochrosite
,”
Environ. Sci. Technol.
,
41
(
18
), pp.
6491
6497
.
28.
Nwidee
,
L. N.
,
Lebedev
,
M.
,
Barifcani
,
A.
,
Sarmadivaleh
,
M.
, and
Iglauer
,
S.
,
2017
, “
Wettability Alteration of Oil-Wet Limestone Using Surfactant-Nanoparticle Formulation
,”
J. Colloid Interface Sci.
,
504
(
15
), pp.
334
345
.
29.
Pham
,
T. D.
,
Kobayashi
,
M.
, and
Adachi
,
Y.
,
2015
, “
Adsorption of Anionic Surfactant Sodium Dodecyl Sulfate Onto Alpha Alumina With Small Surface Area
,”
Colloid Polym. Sci.
,
293
(
1
), pp.
217
227
.
30.
Southwick
,
J. G.
,
Pol
,
E. V. D.
,
Rijn
,
C. H. V.
,
Batenburg
,
D. W. V.
,
Boersma
,
D.
,
Svec
,
Y.
,
Mastan
,
A. A.
,
Shahin
,
G.
, and
Raney
,
K.
,
2016
, “
Ammonia As Alkali for Alkaline/Surfactant/Polymer Floods
,”
SPE J.
,
21
(
1
), pp.
10
21
.
31.
Levitt
,
D.
, and
Bourrel
,
M.
,
2016
, “
Adsorption of EOR Chemicals Under Laboratory and Reservoir Conditions Part III: Chemical Treatment Methods
,”
Paper SPE 179636, SPE Improved Oil Recovery Conference
,
Tulsa, OK
.
32.
Shehata
,
A. M.
,
Alotaibi
,
M. B.
, and
Nasr-El-Din
,
H. A.
,
2014
, “
Waterflooding in Carbonate Reservoirs: Does the Salinity Matter?
,”
SPE Reserv. Evaluat. Eng.
,
17
(
3
), pp.
304
313
.
33.
Parkhurst
,
D. L.
, and
Appelo
,
C. A. J.
,
2013
,
Description of Input and Examples for PHREEQC version 3: A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations
, 6-A43 ed.,
U.S. Geological Survey
,
Reston, VA
497
.
34.
Khurshid
,
I.
, and
Fujii
,
Y.
,
2021
, “
Geomechanical Analysis of Formation Deformation and Permeability Enhancement Due to Low-Temperature CO2 Injection in Subsurface Oil Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
11
(
4
), pp.
1915
1923
.
35.
Khurshid
,
I.
,
Lee
,
K. J.
, and
Choe
,
J.
,
2013
, “
Analyses of Thermal Disturbance in Drilling Deep and High Temperature Formations
,”
Energy Sour. A: Recovery Util. Environ. Eff.
,
35
(
16
), pp.
1487
1497
.
36.
Jackson
,
M. D.
,
Vinogradov
,
J.
,
Hamon
,
G.
, and
Chamerois
,
M.
,
2016
, “
Evidence, Mechanisms and Improved Understanding of Controlled Salinity Water Flooding Part 1: Sandstones
,”
Fuel
,
185
, pp.
772
793
.
37.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Al-Attar
,
H.
, and
Alneaimi
,
A.
,
2020
, “
Analysis of Fracture Choking Due to Asphaltene Deposition in Fractured Reservoirs and Its Effect on Productivity
,”
J. Pet. Explor. Prod. Technol.
,
10
(
8
), pp.
3377
3387
.
38.
Wang
,
X.
, and
Alvarado
,
V.
,
2017
, “
Effects of Low-Salinity Water Flooding on Capillary Pressure Hysteresis
,”
Fuel
,
207
, pp.
336
343
.
39.
Hirasaki
,
G.
,
1991
, “
Wettability: Fundamentals and Surface Forces
,”
SPE Format. Evaluat.
,
6
(
2
), pp.
217
226
.
40.
Xie
,
Q.
,
Saeedi
,
A.
,
Pooryousefy
,
E.
, and
Liu
,
Y.
,
2016
, “
Extended DLVO-Based Estimates of Surface Force in Low Salinity Water Flooding
,”
J. Mol. Liq.
,
221
, pp.
658
665
.
41.
Morse
,
J. W.
, and
Arvidson
,
R. S.
,
2002
, “
The Dissolution Kinetics of Major Sedimentary Carbonate Minerals
,”
Earth-Sci. Rev.
,
58
(
1–2
), pp.
51
84
.
42.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Afgan
,
I.
,
2022
, “
New Insights Into Surfactant Adsorption Estimation During ASP Flooding in Carbonates Under Harsh Conditions Using Surface Complexation Modeling
,”
SPE Reserv. Evaluat. Eng.
, pp.
1
17
.
43.
Gandomkar
,
A.
, and
Kharrat
,
R.
,
2013
, “
Anionic Surfactant Adsorption Through Porous Media in Carbonate Cores: An Experimental Study
,”
Energy Sour. Part A
,
35
(
1
), pp.
58
65
.
44.
Pillai
,
P.
, and
Mandal
,
A.
,
2019
, “
Wettability Modification and Adsorption Characteristics of Imidazole-Based Ionic Liquid on Carbonate Rock: Implication for Enhanced Oil Recovery
,”
Energy Fuels
,
33
(
2
), pp.
727
738
.
45.
Ahmadi
,
M. A.
, and
Shadizadeh
,
S. R.
,
2015
, “
Experimental Investigation of a Natural Surfactant Adsorption on Shale-Sandstone Reservoir Rocks: Static and Dynamic Conditions
,”
Fuel
,
159
, pp.
15
26
.
46.
Brady
,
P. V.
, and
Thyne
,
G.
,
2016
, “
Functional Wettability in Carbonate Reservoir
,”
Energy Fuels
,
30
(
11
), pp.
9217
9225
.
47.
Israelachvili
,
J.
,
2011
,
Intermolecular and Surface Forces
, 3rd ed.,
Academic Press, Elsevier
,
San Diego, CA
.
48.
Khurshid
,
I.
, and
Al-Shalabi
,
E.
,
2022
, “
New Insights Into Modeling Disjoining Pressure and Wettability Alteration by Engineered Water: Surface Complexation Based Rock Composition Study
,”
J. Pet. Sci. Eng.
,
208
, p.
109584
.
49.
Pokrovsky
,
O. S.
,
Schott
,
J.
, and
Thomas
,
F.
,
1996
, “
Dolomite Surface Speciation and Reactivity in Aquatic Systems
,”
Geochim. Cosmochim. Acta
,
63
(
219
), pp.
3133
3143
.
50.
Thompson
,
D. W.
, and
Pownall
,
P. G.
,
1989
, “
Surface Electrical Properties of Calcite
,”
J. Colloid Interface Sci.
,
131
(
1
), pp.
74
82
.
51.
Rego
,
F. B.
,
Mehrabi
,
M.
,
Sanaei
,
A.
, and
Sepehrnoori
,
K.
,
2021
, “
Improvements on Modelling Wettability Alteration by Engineered Water Injection: Surface Complexation at the Oil/Brine/Rock Contact
,”
Fuel
,
284
, p.
118991
.
52.
Buckley
,
J. S.
,
Takamura
,
K.
, and
Morrow
,
N. R.
,
1989
, “
Influence of Electrical Surface Charges on the Wetting Properties of Crude Oil
,”
SPE Reserv. Eng.
,
4
(
3
), pp.
332
340
.
53.
Dubey
,
S. T.
, and
Doe
,
P. H.
,
1993
, “
Base Number and Wetting Properties of Crude Oils
,”
SPE Reserv. Eng.
,
8
(
3
), pp.
195
200
.
54.
Lopez-Salinas
,
J. L.
,
Hirasaki
,
G. J.
, and
Miller
,
C. A.
,
2011
, “
Determination of Anhydrite in Reservoirs for EOR
,”
Paper SPE-141420, SPE International Symposium on Oilfield Chemistry
,
Woodland, TX
.
55.
Gupta
,
R.
, and
Mohanty
,
K. K.
,
2010
, “
Wettability Alteration Mechanism for Oil Recovery From Fractured Carbonate Rocks
,”
Transp. Porous Media
,
87
(
2
), pp.
635
652
.
56.
Al-Yousef
,
H.Y.
,
Lichaa
,
P.M
,
Al-Kaabi
,
A.U.
, and
Alpustun
,
H.
,
1995
, “
Wettability Evaluation of a Carbonate Reservoir Rock from Core to Pore Level
,”
Middle East Oil Show
,
Bahrain
,
Mar. 11–14
, p. 327.
57.
Alotaibi
,
M. B.
,
Nasr-El-Din
,
H. A.
, and
Fletcher
,
J. J.
,
2011
, “
Electrokinetics of Limestone and Dolomite Rock Particles
,”
SPE Reserv. Evaluat. Eng.
,
14
(
5
), pp.
594
603
.
You do not currently have access to this content.