Abstract

Solid particle erosion is a common and challenging phenomenon during the production and transport of particle-containing fluids and it is important to have models for predicting erosion rates accurately, especially for geometries such as elbows. Mechanistic models aim at predicting erosion accurately with low computational cost. In this study, a new particle trajectories-based mechanistic model is proposed to address the issues of liquid-dominated flows and the effect of particle size. Detailed flow and particle information for a standard elbow with water and air and different particle sizes are extracted from computational fluid dynamics (CFD) and analyzed to obtain a representative trajectory. The developed model includes various components that are sensitive to the particle size and flow conditions and accounts for the angle of impact and the turbulence in the flow. The proposed model is examined against CFD predictions for different pipe and particle sizes, and velocities with air, water, high-pressure air, and high-viscosity liquid. In comparison to an available mechanistic model, the new model provides relatively lower errors in predicting maximum erosion for many flow conditions. Moreover, the proposed model is found to be more consistent with CFD data for high-pressure air and higher-viscosity liquids. The model is further validated with experimental data for various conditions. Comparisons against numerical and experimental data suggest that the proposed model provides a significant improvement for liquid–solid flows and small particles.

References

1.
Tarodiya
,
R.
, and
Levy
,
A.
,
2021
, “
Surface Erosion Due to Particle-Surface Interactions—A Review
,”
Powder Technol.
,
387
, pp.
527
559
.
2.
R.E. API
,
1981
, “
Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems
,”
American Petroleum Institute Recommended Practice RP
, p.
22
.
3.
Salama
,
M. M.
,
2000
, “
An Alternative to API 14E Erosional Velocity Limits for Sand-Laden Fluids
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
71
77
.
4.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
.
5.
Shirazi
,
S.
,
McLaury
,
B.
,
Shadley
,
J.
, and
Rybicki
,
E.
,
1995
, “
Generalization of the API RP 14E Guideline for Erosive Services
,”
J. Pet. Technol.
,
47
(
8
), pp.
693
698
.
6.
Chen
,
X.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2004
, “
Application and Experimental Validation of a Computational Fluid Dynamics (CFD)-Based Erosion Prediction Model in Elbows and Plugged Tees
,”
Comput. Fluids
,
33
(
10
), pp.
1251
1272
.
7.
Edwards
,
J. K.
,
2000
,
Development, Validation, and Application of a Three-Dimensional, CFD-Based Erosion Prediction Procedure
,
Mechanical Engineering, The University of Tulsa
,
Tulsa, OK
.
8.
Karimi
,
S.
,
Xu
,
B.
,
Asgharpour
,
A.
,
Shirazi
,
S. A.
, and
Sen
,
S.
,
2020
, “
Predicting Solid Particle Erosion and Uncertainty in Elbows by Artificial Intelligence Methods
,”
Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
, Paper No.
V002T004A014
.
9.
Bahrainian
,
S. S.
,
Bakhshesh
,
M.
,
Hajidavalloo
,
E.
, and
Parsi
,
M.
,
2021
, “
A Novel Approach for Solid Particle Erosion Prediction Based on Gaussian Process Regression
,”
Wear
,
466–467
, p.
203549
.
10.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A Comprehensive Review of Solid Particle Erosion Modeling for Oil and Gas Wells and Pipelines Applications
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
850
873
.
11.
McLaury
,
B. S.
,
1993
, “
A Model to Predict Solid Particle Erosion in Oilfield Geometries
,”
Doctoral dissertation
, The
University of Tulsa
,
Tulsa, OK
.
12.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2015
, “
A Combined CFD/Experimental Methodology for Erosion Prediction
,”
Wear
,
332–333
, pp.
1090
1097
.
13.
Darihaki
,
F.
,
Hajidavalloo
,
E.
,
Ghasemzadeh
,
A.
, and
Safian
,
G. A.
,
2017
, “
Erosion Prediction for Slurry Flow in Choke Geometry
,”
Wear
,
372–373
, pp.
42
53
.
14.
Shirazi
,
S.
,
McLaury
,
B.
, and
Arabnejad
,
H.
,
2016
, “
A Semi-Mechanistic Model for Predicting Sand Erosion Threshold Velocities in Gas and Multiphase Flow Production
,”
SPE Annual Technical Conference and Exhibition
,
Dubai, UAE
,
Sept. 26–28
, Society of Petroleum Engineers.
15.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2015
, “
Evaluation of Solid Particle Erosion Equations and Models for Oil and Gas Industry Applications
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 28–30
, Society of Petroleum Engineers.
16.
Vieira
,
R. E.
, and
Shirazi
,
S. A.
,
2021
, “
A Mechanistic Model for Predicting Erosion in Churn Flow
,”
Wear
,
476
, p.
203654
.
17.
Darihaki
,
F.
,
Fallah Shojaie
,
E.
,
Zhang
,
J.
, and
Shirazi
,
S. A.
,
2020
, “
A Combined CFD-Mechanistic Approach for Predicting Solid Particle Erosion in Annular Flow in Pipe Fittings and Elbows
,”
ASME 2020 Fluids Engineering Division Summer Meeting Collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels
,
San Francisco, CA
,
July
.
18.
Sedrez
,
T. A.
,
2020
,
A New Methodology to Predict Erosion in Liquid-Dominated Flows by Computational Fluid Dynamics (CFD) Based on Experiments
,
The University of Tulsa
,
Tulsa, OK
.
19.
Agrawal
,
M.
,
Khanna
,
S.
,
Kopliku
,
A.
, and
Lockett
,
T.
,
2019
, “
Prediction of Sand Erosion in CFD With Dynamically Deforming Pipe Geometry and Implementing Proper Treatment of Turbulence Dispersion in Particle Tracking
,”
Wear
,
426–427
, pp.
596
604
.
20.
Duarte
,
C. A. R.
,
de Souza
,
F. J.
,
de Vasconcelos Salvo
,
R.
, and
dos Santos
,
V. F.
,
2017
, “
The Role of Inter-Particle Collisions on Elbow Erosion
,”
Int. J. Multiphase Flow
,
89
, pp.
1
22
.
21.
Farokhipour
,
A.
,
Mansoori
,
Z.
,
Rasteh
,
A.
,
Rasoulian
,
M.
,
Saffar-Avval
,
M.
, and
Ahmadi
,
G.
,
2019
, “
Study of Erosion Prediction of Turbulent Gas–Solid Flow in Plugged Tees Via CFD-DEM
,”
Powder Technol.
,
352
, pp.
136
150
.
22.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2017
, “
The Effect of Sub-Models and Parameterizations in the Simulation of Abrasive Jet Impingement Tests
,”
Wear
,
370–371
, pp.
59
72
.
23.
Parsi
,
M.
,
Agrawal
,
M.
,
Srinivasan
,
V.
,
Vieira
,
R. E.
,
Torres
,
C. F.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2015
, “
CFD Simulation of Sand Particle Erosion in Gas-Dominant Multiphase Flow
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
706
718
.
24.
Pouraria
,
H.
,
Darihaki
,
F.
,
Park
,
K. H.
,
Shirazi
,
S. A.
, and
Seo
,
Y.
,
2020
, “
CFD Modelling of the Influence of Particle Loading on Erosion Using Dense Discrete Particle Model
,”
Wear
,
460
, p.
203450
.
25.
Sedrez
,
T. A.
,
Shirazi
,
S. A.
,
Rajkumar
,
Y. R.
,
Sambath
,
K.
, and
Subramani
,
H. J.
,
2019
, “
Experiments and CFD Simulations of Erosion of a 90 deg Elbow in Liquid-Dominated Liquid–Solid and Dispersed-Bubble-Solid Flows
,”
Wear
,
426
, pp.
570
580
.
26.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows Due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.
27.
Zahedi
,
P.
,
Zhang
,
J.
,
Arabnejad
,
H.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2017
, “
CFD Simulation of Multiphase Flows and Erosion Predictions Under Annular Flow and Low Liquid Loading Conditions
,”
Wear
,
376–377
, pp.
1260
1270
.
28.
Darihaki
,
F.
,
Zhang
,
J.
,
Vieira
,
R. E.
, and
Shirazi
,
S. A.
,
2021
, “
The Near-Wall Treatment for Solid Particle Erosion Calculations With CFD Under Gas and Liquid Flow Conditions in Elbows
,”
Adv. Powder Technol.
,
32
(
5
), pp.
1663
1676
.
29.
Xie
,
Z.
,
Cao
,
X.
,
Zhang
,
J.
,
Darihaki
,
F.
,
Karimi
,
S.
,
Xiong
,
N.
, and
Li
,
Q.
,
2021
, “
Effect of Cell Size on Erosion Representation and Recommended Practices in CFD
,”
Powder Technol.
,
389
, pp.
522
535
.
30.
Adedeji
,
O. E.
, and
Duarte
,
C. A. R.
,
2020
, “
Prediction of Thickness Loss in a Standard 90 deg Elbow Using Erosion-Coupled Dynamic Mesh
,”
Wear
,
460
, p.
203400
.
31.
Chochua
,
G.
,
Parsi
,
M.
,
Zhang
,
Y.
,
Zhang
,
J.
,
Sedrez
,
T.
,
Karimi
,
S.
,
Darihaki
,
F.
, et al
,
2020
, “
A Review of Various Guidelines for Predicting Solid Particle Erosion Using Computational Fluid Dynamics Codes
,”
NACE Corrosion
,
Virtual
,
June 2020
.
32.
Zhang
,
J.
,
Darihaki
,
F.
, and
Shirazi
,
S. A.
,
2019
, “
A Comprehensive CFD-Based Erosion Prediction for Sharp Bend Geometry With Examination of Grid Effect
,”
Wear
,
430
, pp.
191
201
.
33.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2018
, “
Application and Experimental Validation of a CFD Based Erosion Prediction Procedure for Jet Impingement Geometry
,”
Wear
,
394
, pp.
11
19
.
34.
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2009
, “
Improvements of Particle Near-Wall Velocity and Erosion Predictions Using a Commercial CFD Code
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031303
.
35.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2018
, “
A CFD-Based Method for Slurry Erosion Prediction
,”
Wear
,
398
, pp.
127
145
.
36.
Zhang
,
Y.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2010
, “
A Two-Dimensional Mechanistic Model for Sand Erosion Prediction Including Particle Impact Characteristics
,”
NACE Corrosion
,
San Antonio, TX
,
Mar. 14–18
.
37.
Elgobashi
,
S.
,
2006
, “
An Updated Classification Map of Particle-Laden Turbulent Flows
,”
IUTAM Symposium on Computational Approaches to Multiphase Flow
,
Argonne National Laboratory
,
October 2004
.
38.
Zahedi
,
P.
,
2018
, “
Sand Erosion in Annular Flow and Low Liquid Loading Flow Conditions
,”
Doctoral dissertation
,
The University of Tulsa
,
Tulsa, OK
.
39.
Arabnejad
,
H.
,
Mansouri
,
A.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2015
, “
Development of Mechanistic Erosion Equation for Solid Particles
,”
Wear
,
332–333
, pp.
1044
1050
.
40.
Kesana
,
N. R.
,
2013
,
Erosion in Multiphase Pseudo Slug Flow With Emphasis on Sand Sampling and Pseudo Slug Characteristics
,
The University of Tulsa
,
Tulsa, OK
.
41.
Vieira
,
R. E.
,
2014
,
Sand Erosion Model Improvement for Elbows in Gas Production, Multiphase Annular and Low-Liquid Flow
, 1st ed.,
The University of Tulsa
,
Tulsa, OK
.
42.
Fallah Shojaie
,
E.
,
Sedrez
,
T. A.
,
Darihaki
,
F.
, and
Shirazi
,
S. A.
,
2021
, “
Uncertainty Estimation in CFD Simulations of Erosion for Elbows
,”
Fluids Engineering Division Summer Meeting
,
American Society of Mechanical Engineers
, Paper No.
V001T002A027
.
You do not currently have access to this content.