Abstract

The use of the high viscous biofuel results in poor combustion efficiency. Utilization of the biofuel on the existing engine is challenging due to the higher fuel pump force requirement and atomization effects. Hence, in this study, the spray characteristics have been examined in addition to the typical combustion and emission characteristics. In general, spray properties changes are based on the viscosity of the fuel used. Utilizing the higher viscous fluid in the engine creates havoc on liquid penetration and vapor penetration. A series of tests was conducted in the single-cylinder four-stroke diesel engine fuelled with Jatropha Curcas. The biodiesel blends were prepared at three different combinations of 10%, 20%, and 30% dispersed with the Fe2O3 nanoparticles at 50 ppm to form JF10 (10% blend + 90% diesel with 50 ppm of Fe2O3), JF20 (20% blend + 80% diesel with 50 ppm of Fe2O3), and JF30 (30% blend + 70% diesel with 50 ppm of Fe2O3). Based on the previous study observation, adding the blends affects the both combustion and performance of the engine which is counteracted in this study by adding the nanoparticles to the blends. From the obtained results, it is proved that the addition of nanoparticles increases the engine performance and emission characteristics. To be precise, the brake thermal efficiency has been improvised by 4% for the JF10 compared to neat diesel. With regard to emissions, a massive reduction in CO and NOx has been observed. To understand the quality of combustion, the fluid spray simulation has been carried out. A set of numerical simulations were done using the particle droplet analysis with the aid of star ccm+ and found that injection pressure and ambient pressure are the key responsible parameters for increasing the combustion efficiency of the system. On the other hand, the liquid length of blended fuel is another key factor that affects the atomization process. Furthermore, the high injection pressure reduces the spray cone angle for biodiesel by achieving high mixing rates.

References

1.
Stávková
,
J.
, and
Maroušek
,
J.
,
2021
, “
Novel Sorbent Shows Promising Financial Results on P Recovery From Sludge Water
,”
Chemosphere
,
276
(
8
), p.
130097
.
2.
Pasupuleti
,
R. R.
,
Tsai
,
P. C.
, and
Ponnusamy
,
V. K.
,
2021
, “
Low-Cost Disposable Poly (Ethyleneimine)-Functionalized Carbon Nanofibers Coated Cellulose Paper as Efficient Solid Phase Extraction Sorbent Material for the Extraction of Parahydroxybenzoates From Environmental Waters
,”
Chemosphere
,
267
(
2
), p.
129274
.
3.
Jandačka
,
J.
,
Mičieta
,
J.
,
Holubčík
,
M.
, and
Nosek
,
R.
,
2017
, “
Experimental Determination of Bed Temperatures During Wood Pellet Combustion
,”
Energy Fuels
,
31
(
3
), pp.
2919
2926
.
4.
Thanh
,
N. C.
,
Askary
,
A. E.
,
Elfasakhany
,
A.
, and
Nithya
,
S.
,
2021
, “
Exergy and Energy Analyses of the Spirulina Microalgae Blends in a Direct Injection Engine at Variable Engine Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120908
.
5.
Maroušek
,
J.
, and
Trakal
,
L.
,
2021
, “
Techno-Economic Analysis Reveals the Untapped Potential of Wood Biochar
,”
Chemosphere
,
291
(
part 1
), p.
133000
.
6.
Sangeetha
,
M.
,
Boomadevi
,
P.
,
Khalifa
,
A. S.
,
Brindhadevi
,
K.
, and
Sekar
,
M.
,
2021
, “
Vibration, Acoustic and Emission Characteristics of the Chlorella Vulgaris Microalgae Oil in Compression Ignition Powerplants to Mitigate Environmental Pollution
,”
Chemosphere
,
293
(
4
), p.
133475
.
7.
Jayaseelan
,
G. A.
,
Anderson
,
A.
,
Manigandan
,
S.
,
Elfasakhany
,
A.
, and
Dhinakaran
,
V.
,
2021
, “
Effect of Engine Parameters, Combustion and Emission Characteristics of Diesel Engine with Dual Fuel Operation
,”
Fuel
,
302
(
4
), p.
121152
.
8.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
9.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
10.
Khalil
,
K. M.
,
Elhamdy
,
W. A.
,
Goda
,
M. N.
, and
Said
,
A. E.
,
2021
, “
Biomass Derived P-Containing Activated Carbon as a Novel Green Catalyst/Support for Methanol Conversion to Dimethyl Ether Alternative Fuel
,”
J. Environ. Chem. Eng.
,
9
(
6
), p.
106572
.
11.
Xing
,
H.
,
Stuart
,
C.
,
Spence
,
S.
, and
Chen
,
H.
,
2021
, “
Alternative Fuel Options for Low Carbon Maritime Transportation: Pathways to 2050
,”
J. Cleaner Prod.
,
297
(
2
), p.
126651
.
12.
Jin
,
C.
,
Pang
,
X.
,
Zhang
,
X.
,
Wu
,
S.
,
Ma
,
M.
,
Xiang
,
Y.
,
Ma
,
J.
,
Ji
,
J.
,
Wang
,
G.
, and
Liu
,
H.
,
2019
, “
Effects of C3–C5 Alcohols on Solubility of Alcohols/Diesel Blends
,”
Fuel
,
236
(
1
), pp.
65
74
.
13.
Rehbein
,
M. C.
,
Meier
,
C.
,
Eilts
,
P.
, and
Scholl
,
S.
,
2019
, “
Mixtures of Ammonia and Organic Solvents as Alternative Fuel for Internal Combustion Engines
,”
Energy Fuels
,
33
(
10
), pp.
10331
10342
.
14.
Nawaz
,
S.
,
Ahmad
,
M.
,
Asif
,
S.
,
Klemeš
,
J. J.
,
Mubashir
,
M.
,
Munir
,
M.
,
Zafar
,
M.
, et al.
,
2022
, “
Phyllosilicate Derived Catalysts for Efficient Conversion of Lignocellulosic Derived Biomass to Biodiesel: A Review
,”
Bioresour. Technol.
,
343
(
4
), p.
126068
.
15.
Xia
,
C.
,
Van Le
,
Q.
,
Chinnathambi
,
A.
,
Salmen
,
S. H.
,
Alharbi
,
S. A.
, and
Tola
,
S.
,
2021
, “
Role of ZnO and Fe2O3 Nanoparticle on Synthetic Saline Wastewater on Growth, Nutrient Removal and Lipid Content of Chlorella Vulgaris for Sustainable Production of Biofuel
,”
Fuel
,
300
(
3
), p.
120924
.
16.
Gad
,
M. S.
,
El-Shafay
,
A. S.
, and
Hashish
,
H. A.
,
2021
, “
Assessment of Diesel Engine Performance, Emissions and Combustion Characteristics Burning Biodiesel Blends From Jatropha Seeds
,”
Process Saf. Environ. Prot.
,
147
(
1
), pp.
518
526
.
17.
Zhong
,
W.
,
Mahmoud
,
N. M.
, and
Wang
,
Q.
,
2022
, “
Numerical Study of Spray Combustion and Soot Emission of Gasoline–Biodiesel Fuel Under Gasoline Compression Ignition-Relevant Conditions
,”
Fuel
,
310
(
3
), p.
122293
.
18.
Algayyim
,
S. J.
, and
Wandel
,
A. P.
,
2021
, “
Macroscopic and Microscopic Characteristics of Biofuel Spray (Biodiesel and Alcohols) in CI Engines: A Review
,”
Fuel
,
292
(
5
), p.
120303
.
19.
Gad
,
M. S.
, and
Jayaraj
,
S.
,
2020
, “
A Comparative Study on the Effect of Nano-Additives on the Performance and Emissions of a Diesel Engine run on Jatropha Biodiesel
,”
Fuel
,
267
(
2
), p.
117168
.
20.
Subramani
,
N.
,
Sangeetha
,
M.
,
Kengaiah
,
V.
, and
Prakash
,
S.
,
2021
, “
Numerical Modeling on Dynamics of Droplet in Aircraft Wing Structure at Different Velocities
,”
Aircr. Eng. Aerosp. Technol.
,
94
(
4
), pp.
553
558
.
21.
Xia
,
C.
,
Brindhadevi
,
K.
,
Elfasakhany
,
A.
,
Alsehli
,
M.
, and
Tola
,
S.
,
2021
, “
Numerical Modeling of the Premixed Compression Ignition Engine for Superior Combustion and Emission Characteristics
,”
Fuel
,
306
(
4
), p.
121540
.
22.
Chen
,
W.
,
Gao
,
R.
,
Sun
,
J.
,
Lei
,
Y.
, and
Fan
,
X.
,
2018
, “
Modeling of an Isolated Liquid Hydrogen Droplet Evaporation and Combustion
,”
Cryogenics
,
96
(
2
), pp.
151
158
.
23.
Al-Kheraif
,
A. A.
,
Syed
,
A.
,
Elgorban
,
A. M.
,
Divakar
,
D. D.
,
Shanmuganathan
,
R.
, and
Brindhadevi
,
K.
,
2021
, “
Experimental Assessment of Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled by Combined Non-Edible Blends With Nanoparticles
,”
Fuel
,
295
(
3
), p.
120590
.
24.
Ge
,
S.
,
Brindhadevi
,
K.
,
Xia
,
C.
,
Khalifa
,
A. S.
,
Elfasakhany
,
A.
,
Unpaprom
,
Y.
, and
Van Doan
,
H.
,
2022
, “
Enhancement of the Combustion, Performance and Emission Characteristics of Spirulina Microalgae Biodiesel Blends Using Nanoparticles
,”
Fuel
,
308
(
1
), p.
121822
.
25.
Ge
,
S.
,
Brindhadevi
,
K.
,
Xia
,
C.
,
Elesawy
,
B. H.
,
Elfasakhany
,
A.
,
Unpaprom
,
Y.
, and
Van Doan
,
H.
,
2021
, “
Egg Shell Catalyst and Chicken Waste Biodiesel Blends for Improved Performance, Combustion and Emission Characteristics
,”
Fuel
,
306
(
4
), p.
121633
.
26.
Sheng
,
Y.
,
Brindhadevi
,
K.
,
Eed
,
E. M.
,
Xia
,
C.
, and
Chi
,
N. T.
,
2022
, “
Enzymatic Lipase-Based Methyl Esterified Citrullus Colocynthis L. Biodiesel for Improved Combustion, Performance and Emission Characteristics
,”
Fuel
,
307
(
1
), p.
121899
.
27.
Hossain
,
A. K.
, and
Hussain
,
A.
,
2019
, “
Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel
,”
Energies
,
12
(
5
), p.
921
.
You do not currently have access to this content.