Abstract

Normal-decane (n-C10H22) is considered as a major component of surrogate for jet and diesel fuels. Jet propellant 8 (JP-8) is a jet fuel which is kerosene-based for gas turbine-powered for aircraft. JP-8 is also considered as fleet fuel. JP-8 has a complex chemical component of higher-order hydrocarbons, including alkanes, cycloalkanes, and aromatic molecules, which makes it hard to develop a chemical kinetics mechanism. In this work, few chemical kinetics mechanisms of n-decane and JP-8 surrogates have been used to model the combustion processes of these fuels in general and determining their burning speed, specifically. The CANTERA freely propagating 1D flame code was used in conjunction with the chemical kinetic mechanism to predict the laminar burning speeds. The theoretical predicted laminar burning speeds have been compared with the experimental laminar burning speed found in the literature.

References

1.
National Center for Biotechnology Information
,
2022
, “
PubChem Compound Summary for CID 15600, Decane
,” https://pubchem.ncbi.nlm.nih.gov/compound/15600, Accessed May 22, 2022.
2.
National Research Council (US) Subcommittee on Permissible Exposure Levels for Military Fuels
,
1996
,
Permissible Exposure Levels for Selected Military Fuel Vapors, Physical and Chemical Properties of Military Fuels
, Vol.
2
,
National Academies Press
,
Washington, DC
, https://www.ncbi.nlm.nih.gov/books/NBK231234/, Accessed May 20, 2022.
3.
Zhao
,
Z.
,
Li
,
J.
,
Kazakov
,
A.
,
Dryer
,
F. L.
, and
Zeppieri
,
S. P.
,
2004
, “
Burning Velocities and a High Temperature Skeletal Kinetic Model for n-Decane
,”
Combust. Sci. Technol.
,
177
(
1
), pp.
89
106
.
4.
Ji
,
C.
,
Dames
,
E.
,
Wang
,
Y. L.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
,
2010
, “
Propagation and Extinction of Premixed C5–C12 n-Alkane Flames
,”
Combust. Flame
,
157
(
2
), pp.
277
287
.
5.
Singh
,
D.
,
Nishiie
,
T.
, and
Qiao
,
L.
,
2010
, “
Laminar Burning Speeds and Markstein Lengths of n-Decane/Air, n-Decane/O2/He, Jet-A/Air and S-8/Air Flames
,”
Presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
6.
Kumar
,
K.
, and
Sung
,
C.-J.
,
2007
, “
Laminar Flame Speeds and Extinction Limits of Preheated n-Decane/O2/N2 and n-Dodecane/O2/N2 Mixtures
,”
Combust. Flame
,
151
(
1-2
), pp.
209
224
.
7.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
8.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(
5
), pp.
1041
1049
.
9.
Heneghan
,
S. P.
,
Locklear
,
S. L.
,
Geiger
,
D. L.
,
Anderson
,
S. D.
, and
Schulz
,
W. D.
,
1993
, “
Static Tests of Jet Fuel Thermal and Oxidative Stability
,”
J. Propul. Power
,
9
(
1
), pp.
5
9
.
10.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Sarofim
,
A. F.
,
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
417
.
11.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.
12.
Humer
,
S.
,
Frassoldati
,
A.
,
Granata
,
S.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2007
, “
Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates and Reference Components in Laminar Nonpremixed Flows
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
393
400
.
13.
Seshadri
,
K.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Niemann
,
U.
,
Weydert
,
P.
, and
Ranzi
,
E.
,
2011
, “
Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates and Components in Laminar Premixed Flows
,”
Combus. Theory Model.
,
15
(
4
), pp.
569
583
.
14.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,”
Sandia National Lab. (SNL-CA)
, SAND-89-8009,
Livermore, CA
.
15.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.
16.
Stagni
,
A.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2014
, “
Lumping and Reduction of Detailed Kinetic Schemes: An Effective Coupling
,”
Ind. Eng. Chem. Res.
,
53
(
22
), pp.
9004
9016
.
17.
Stagni
,
A.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2016
, “
Skeletal Mechanism Reduction Through Species-Targeted Sensitivity Analysis
,”
Combust. Flame
,
163
, pp.
382
393
.
18.
Wang
,
H.
,
Dames
,
E.
,
Sirjean
,
B.
,
Sheen
,
D. A.
,
Tango
,
R.
,
Violi
,
A.
,
Lai
,
J. Y. W.
, et al
2010
, “
A High-Temperature Chemical Kinetic Model of n-Alkane (Up to n-Dodecane), Cyclohexane, and Methyl-, Ethyl-, n-Propyl and n-Butyl-Cyclohexane Oxidation at High Temperatures, JetSurF version 2.0
,” http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html, Accessed May 19, 2022.
19.
Chang
,
Y.
,
Jia
,
M.
,
Liu
,
Y.
,
Li
,
Y.
, and
Xie
,
M.
,
2013
, “
Development of a New Skeletal Mechanism for n-Decane Oxidation Under Engine-Relevant Conditions Based on a Decoupling Methodology
,”
Combust. Flame
,
160
(
8
), pp.
1315
1332
.
20.
Tosatto
,
L.
,
Bennett
,
B. A. V.
, and
Smooke
,
M. D.
,
2013
, “
Comparison of Different DRG-Based Methods for the Skeletal Reduction of JP-8 Surrogate Mechanisms
,”
Combust. Flame
,
160
(
9
), pp.
1572
1582
.
You do not currently have access to this content.