Abstract

The amount of food waste due to the product expiration date is growing globally each year. Although the expired food loses its nutritional and safe edible value, it still offers great energy conversion value. In this study, expired pistachios were pyrolyzed and gasified in a semi-batch reactor at temperatures of 873–1223 K. The gases components of the produced syngas were analyzed using a micro-gas chromatograph for the syngas yield, and gases mass flowrates as well as the energy of each component in the syngas were calculated. CO2 consumption from the gasification reaction at different temperatures was also evaluated. Experimental results showed that the syngas yield and syngas energy from pyrolysis and CO2-assisted gasification increased with the in-reaction temperatures. Higher reaction temperature resulted in a shorter reaction time for the evolution of the peak value of the syngas mass flowrate. During pyrolysis, the increase in temperature from 873 to 1223 K enhanced syngas yield by 8.6 times from 1.42 kJ/g to 13.62 kJ/g. However, during the CO2-assisted gasification, syngas energy increased from 5.43 kJ/g to 17.27 kJ/g in the temperature range of 973–1173 K. The CO2 consumption in the gasification of pistachio samples enhanced with the increase in reaction temperature. The mass of CO2 consumption at 1223 K was 0.67 g/g, which was 138 times higher than that of 0.005 g/g at 973 K. Furthermore, at the same temperature (1223 K), the syngas yield from gasification was 1.3 times higher than that from pyrolysis. Thus, higher temperatures promoted the reaction rate of gasification processes as well as the consumption of greenhouse gas (CO2). The CO2-assisted gasification technology is an effective pathway to convert expired food into clean sustainable energy.

References

1.
Do
,
Q.
,
Ramudhin
,
A.
,
Colicchia
,
C.
,
Creazza
,
A.
, and
Li
,
D.
,
2021
, “
A Systematic Review of Research on Food Loss and Waste Prevention and Management for the Circular Economy
,”
Int. J. Prod. Econ.
,
239
(
1
), p.
108209
.
2.
Ishangulyyev
,
R.
,
Kim
,
S.
, and
Lee
,
S. H.
,
2019
, “
Understanding Food Loss and Waste—Why Are We Losing and Wasting Food?
,”
Foods
,
8
(
8
), p.
297
.
3.
Badgett
,
A.
, and
Milbrandt
,
A.
,
2021
, “
Food Waste Disposal and Utilization in the United States: A Spatial Cost Benefit Analysis
,”
J. Cleaner Prod.
,
314
(
1
), p.
128057
.
4.
Breunig
,
H. M.
,
Jin
,
L.
,
Robinson
,
A.
, and
Scown
,
C. D.
,
2017
, “
Bioenergy Potential From Food Waste in California
,”
Environ. Sci. Technol.
,
51
(
3
), pp.
1120
1128
.
5.
Slorach
,
P. C.
,
Jeswani
,
H. K.
,
Cuéllar-Franca
,
R.
, and
Azapagic
,
A.
,
2019
, “
Environmental and Economic Implications of Recovering Resources From Food Waste in a Circular Economy
,”
Sci. Total Environ.
,
693
(
1
), p.
133516
.
6.
Rgm
,
D. S.
,
Schincaglia
,
R. M.
,
Pimentel
,
G. D.
, and
Mota
,
J. F.
,
2017
, “
Nuts and Human Health Outcomes: A Systematic Review
,”
Nutrients
,
9
(
12
), p.
1311
.
7.
Hu
,
W.
,
Fitzgerald
,
M.
,
Topp
,
B.
,
Alam
,
M.
, and
O'Hare
,
T. J.
,
2019
, “
A Review of Biological Functions, Health Benefits, and Possible De Novo Biosynthetic Pathway of Palmitoleic Acid in Macadamia Nuts
,”
J. Funct. Foods
,
62
(
1
), p.
103520
.
8.
Rahman
,
A.
,
Wang
,
S.
,
Yan
,
J. S.
, and
Xu
,
H. R.
,
2021
, “
Intact Macadamia Nut Quality Assessment Using Near-Infrared Spectroscopy and Multivariate Analysis
,”
J. Food Compos. Anal.
,
102
(
1
), p.
104033
.
9.
Vecka
,
M.
,
Staňková
,
B.
,
Kutová
,
S.
,
Tomášová
,
P.
,
Tvrzická
,
E.
, and
Žák
,
A.
,
2019
, “
Comprehensive Sterol and Fatty Acid Analysis in Nineteen Nuts, Seeds, and Kernel
,”
SN Appl. Sci.
,
1
(
12
), pp.
1531
1531
.
10.
Kujbida
,
P.
,
Maia
,
P. P.
,
de Araújo
,
A. N.
,
Mendes
,
L. D.
,
de Oliveira
,
M. L.
,
Silva-Rocha
,
W. P.
,
de Brito
,
G. Q.
,
Chaves
,
G. M.
, and
Martins
,
I.
,
2019
, “
Risk Assessment of the Occurrence of Aflatoxin and Fungi in Peanuts and Cashew Nuts
,”
Braz. J. Pharm. Sci.
,
55
(
1
), p.
c18135
.
11.
Mateus
,
A. R. S.
,
Barros
,
S.
,
Pena
,
A.
, and
Silva
,
A. S.
,
2021
, “
Mycotoxins in Pistachios (Pistacia Vera L.): Methods for Determination, Occurrence, Decontamination
,”
Toxins
,
13
(
10
), p.
682
.
12.
de Titto
,
E.
, and
Savino
,
A.
,
2019
, “
Environmental and Health Risks Related to Waste Incineration
,”
Waste Manage. Res.
,
37
(
10
), pp.
976
986
.
13.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2022
, “
Syngas Evolution and Energy Efficiency in CO2 Assisted Gasification of Ion-Exchanged Pine Wood
,”
Fuel
,
317
(
1
), p.
123549
.
14.
Zhang
,
Y.
,
Ji
,
Y.
, and
Qian
,
H.
,
2021
, “
Progress in Thermodynamic Simulation and System Optimization of Pyrolysis and Gasification of Biomass
,”
Green Chem. Eng.
,
2
(
3
), pp.
266
283
.
15.
Singh
,
P.
,
Déparrois
,
N.
,
Burra
,
K. G.
,
Bhattacharya
,
S.
, and
Gupta
,
A. K.
,
2019
, “
Energy Recovery From Cross-Linked Polyethylene Wastes Using Pyrolysis and CO2 Assisted Gasification
,”
Appl. Energy
,
254
(
1
), p.
113722
.
16.
Sutton
,
D.
,
Kelleher
,
B.
, and
Ross
,
J. R. H.
,
2001
, “
Review of Literature on Catalysts for Biomass Gasification
,”
Fuel Process. Technol.
,
73
(
3
), pp.
155
173
.
17.
Dinc
,
G.
,
Isik
,
F.
, and
Yel
,
E.
,
2020
, “
Effects of Pyrolysis Conditions on Organic Fractions and Heat Values of Olive Mill Wastes Pyrolysis Liquid
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102107
.
18.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
19.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2021
, “
Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022306
.
20.
Song
,
H.
,
Yang
,
G.
,
Xue
,
P.
,
Li
,
Y. C.
,
Zou
,
J.
,
Wang
,
S. R.
,
Yang
,
H. P.
, and
Chen
,
H. P.
,
2022
, “
Recent Development of Biomass Gasification for H2 Rich Gas Production
,”
Appl. Energy Combust. Sci.
,
10
(
1
), p.
100059
.
21.
Wang
,
L. J.
,
2013
, “
Production of Bioenergy and Bioproducts From Food Processing Wastes: A Review
,”
Trans. ASABE
,
56
(
1
), pp.
217
229
.
22.
Wang
,
Z. W.
,
Burra
,
K. G.
,
Lei
,
T. Z.
, and
Gupta
,
A. K.
,
2021
, “
Co-pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review
,”
Prog. Energy Combust. Sci.
,
84
(
1
), p.
100899
.
23.
Wang
,
Z. W.
,
Burra
,
K. G.
,
Lei
,
T. Z.
, and
Gupta
,
A. K.
,
2019
, “
Co-gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
, p.
116025
.
24.
Soreanu
,
G.
,
Tomaszewicz
,
M.
,
Fernandez-Lopez
,
M.
,
Valverde
,
J. L.
,
Zuwała
,
J.
, and
Sanchez-Silva
,
L.
,
2017
, “
CO2 Gasification Process Performance for Energetic Valorization of Microalgae
,”
Energy
,
119
(
1
), pp.
37
43
.
25.
Lin
,
L.
,
Yan
,
R.
,
Liu
,
Y.
, and
Jiang
,
W. J.
,
2010
, “
In-Depth Investigation of Enzymatic Hydrolysis of Biomass Wastes Based on Three Major Components: Cellulose, Hemicellulose and Lignin
,”
Bioresour. Technol.
,
101
(
21
), pp.
8217
8223
.
26.
Pinto
,
F.
,
André
,
R.
,
Miranda
,
M.
,
Neves
,
D.
,
Varela
,
F.
, and
Santos
,
J.
,
2016
, “
Effect of Gasification Agent on Co-gasification of Rice Production Wastes Mixtures
,”
Fuel
,
180
(
1
), pp.
407
416
.
27.
Butterman
,
H. C.
, and
Castaldi
,
M. J.
,
2009
, “
CO2 As a Carbon Neutral Fuel Source Via Enhanced Biomass Gasification
,”
Environ. Sci. Technol.
,
43
(
23
), pp.
9030
9037
.
28.
Castaldi
,
M. J.
, and
Butterman
,
H. C.
,
2007
, “
Influence of CO2 Injection on Biomass Gasification
,”
Ind. Eng. Chem. Res.
,
46
(
26
), pp.
8875
8886
.
29.
Bae
,
Y. J.
,
Ryu
,
C.
,
Jeon
,
J.
,
Park
,
J.
,
Suh
,
D. J.
,
Suh
,
Y. W.
,
Chang
,
D.
, and
Park
,
Y. K.
,
2011
, “
The Characteristics of Bio-oil Produced From the Pyrolysis of Three Marine Macroalgae
,”
Bioresour. Technol.
,
102
(
3
), pp.
3512
3520
.
30.
Rekos
,
K. C.
,
Charisteidis
,
I. D.
,
Tzamos
,
E.
,
Palantzas
,
G.
,
Zouboulis
,
A. I.
, and
Triantafyllidis
,
K. S.
,
2022
, “
Valorization of Hazardous Organic Solid Wastes Towards Fuels and Chemicals Via Fast (Catalytic) Pyrolysis
,”
Sustainable Chem.
,
3
(
1
), pp.
91
111
.
31.
Kan
,
T.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2016
, “
Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters
,”
Renewable Sustainable Energy Rev.
,
57
(
1
), pp.
1126
1140
.
32.
Lahijani
,
P.
,
Zainal
,
Z. A.
,
Mohammadi
,
M.
, and
Mohamed
,
A.
,
2015
, “
Conversion of the Greenhouse Gas CO2 to the Fuel Gas CO Via the Boudouard Reaction: A Review
,”
Renewable Sustainable Energy Rev.
,
41
(
1
), pp.
615
632
.
33.
Yong
,
T. K.
,
Dong
,
K. S.
, and
Hwang
,
J.
,
2011
, “
Study of the Effect of Coal Type and Particle Size on Char–CO2 Gasification Via Gas Analysis
,”
Energy Fuels
,
25
(
11
), pp.
5044
5054
.
34.
Li
,
J.
,
Burra
,
K.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes Via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
35.
Waheed
,
Q. M. K.
,
Wu
,
C.
, and
Williams
,
P. T.
,
2016
, “
Hydrogen Production From High Temperature Steam Catalytic Gasification of Bio-char
,”
J. Energy Inst.
,
89
(
2
), pp.
222
230
.
36.
Adnan
,
M. A.
, and
Hossain
,
M. M.
,
2018
, “
Gasification of Various Biomasses Including Microalgae Using CO2—A Thermodynamic Study
,”
Renewable Energy
,
119
(
1
), pp.
598
607
.
37.
Pohořelý
,
M.
,
Jeremiáš
,
M.
,
Svoboda
,
K.
,
Kameníková
,
P.
,
Skoblia
,
S.
, and
Beňo
,
Z.
,
2014
, “
CO2 As Moderator for Biomass Gasification
,”
Fuel
,
117
(
Part A
), pp.
198
205
.
38.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
39.
Brown
,
R. C.
,
2021
, “
The Role of Pyrolysis and Gasification in a Carbon Negative Economy
,”
Processes
,
9
(
5
), p.
882
.
You do not currently have access to this content.