Abstract

Industrial energy efficiency assessments not only provide benefits to manufacturers but also generate significant economic and environmental benefits to localities, states, and the nation through indirect and induced benefits. Quantifying these benefits requires a systematic economic framework for capturing these interactions. This article employs methodologies for improving the energy efficiency of small- and medium-sized industry through their combustion systems. Combustion systems offer large opportunities to enhance energy efficiency through adopting advanced technologies and better-informed operations. The case studies presented illuminate the potential savings and impacts from implementing energy-efficient combustion recommendations and the importance of energy audits and energy efficiency in the fight against climate change. This study describes and quantifies the cascading economic and environmental impacts of implementing the industrial energy efficiency recommendations offered by an energy auditing program by participating facilities over a 10-year period. Results showed that it is expected that a total of $185 M would be saved in energy costs, and 2.3 million metric tons of carbon dioxide emissions would be avoided annually, and about 972 jobs could be created in the studied region if all the combustion recommendations would be implemented. The broader view afforded by the proposed study can be used to support better energy-efficient practices in manufacturing facilities, communities, and states.

References

1.
Laird
,
F. N.
, and
Stefes
,
C.
,
2009
, “
The Diverging Paths of German and United States Policies for Renewable Energy: Sources of Difference
,”
Energy Policy
,
37
(
7
), pp.
2619
2629
.
2.
U.S. Environmental Protection Agency
,
2018
, “
Sources of Greenhouse Gas Emission
,” epa.gov/ghgemissions, Accessed January 31, 2021.
3.
Kluczek
,
A.
, and
Olszewski
,
P.
,
2017
, “
Energy Audits in Industrial Processes
,”
J. Cleaner Prod.
,
142
(
4
), pp.
3437
3453
.
4.
Choi
,
J.-K.
,
Thangamani
,
D.
, and
Kissock
,
K.
,
2019
, “
A Systematic Methodology for Improving Resource Efficiency in Small and Medium-Sized Enterprises
,”
Resour. Conserv. Recycl.
,
147
(
1
), pp.
19
27
.
5.
Rohdin
,
P.
, and
Thollander
,
P.
,
2006
, “
Barriers to and Driving Forces for Energy Efficiency in the Non-Energy Intensive Manufacturing Industry in Sweden
,”
Energy
,
31
(
12
), pp.
1836
1844
.
6.
Choi
,
J.-K.
,
Schuessler
,
R.
,
Ising
,
M.
,
Kelley
,
D.
, and
Kissock
,
K.
,
2018
, “
A Pathway Towards Sustainable Manufacturing for Mid-Size Manufacturers
,”
Procedia CIRP
,
69
(
1
), pp.
230
235
.
7.
Annunziata
,
E.
,
Rizzi
,
F.
, and
Frey
,
M.
,
2014
, “
Enhancing Energy Efficiency in Public Buildings: The Role of Local Energy Audit Programmes
,”
Energy Policy
,
69
(
1
), pp.
364
373
.
8.
Choi
,
J.-K.
,
Kissock
,
K.
, and
Hallinan
,
K.
,
2013
, “
Beyond Industrial Energy Assessments: The Life Cycle Design Perspective
,”
10th Biennial Summer Study on Energy Efficiency in Industry
,
Niagara Falls, NY
,
July 23–26
, pp.
4
11
.
9.
Andersson
,
E.
,
Arfwidsson
,
O.
,
Bergstrand
,
V.
, and
Thollander
,
P.
,
2017
, “
A Study of the Comparability of Energy Audit Program Evaluations
,”
J. Cleaner Prod.
,
142
(
1
), pp.
2133
2139
.
10.
Trianni
,
A.
,
Cagno
,
E.
, and
Accordini
,
D.
,
2019
, “
Energy Efficiency Measures in Electric Motors Systems: A Novel Classification Highlighting Specific Implications in Their Adoption
,”
Appl. Energy
,
252
(
1
), p.
113481
.
11.
DOE, U.S.
,
2021
, “
U.S. Department of Energy's Industrial Assessment Centers (IACs)
,”
Department of Energy
,
Washington, DC
.
12.
Tonn
,
B.
, and
Peretz
,
J. H.
,
2007
, “
State-Level Benefits of Energy Efficiency
,”
Energy Policy
,
35
(
7
), pp.
3665
3674
.
13.
Choi
,
J.-K.
,
Eom
,
J.
, and
McClory
,
E.
,
2018
, “
Economic and Environmental Impacts of Local Utility-Delivered Industrial Energy-Efficiency Rebate Programs
,”
Energy Policy
,
123
(
1
), pp.
289
298
.
14.
Choi
,
J.-K.
,
Kissock
,
K.
,
Hallinan
,
K.
, and
Brecha
,
R.
,
2015
, “
Economic and Environmental Impacts of Energy Efficiency Investment on Local Manufacturers
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
7
.
15.
Liang
,
X.
,
Wang
,
Q.
,
Luo
,
Z.
,
Eddings
,
E.
,
Ring
,
T.
,
Li
,
S.
,
Yu
,
P.
,
Yan
,
J.
,
Yang
,
X.
, and
Jia
,
X.
,
2021
, “
Experimental and Numerical Investigation on Nitrogen Transformation in Pressurized Oxy-Fuel Combustion of Pulverized Coal
,”
J. Cleaner Prod.
,
278
(
1
), p.
123240
.
16.
Liang
,
X.
,
Wang
,
Q.
,
Luo
,
Z.
,
Eddings
,
E.
,
Ring
,
T.
,
Li
,
S.
,
Han
,
L.
,
Lin
,
J.
, and
Xie
,
G.
,
2021
, “
Experimental Study on Sulfur-Containing Products in Pressurised Oxy-Fuel Pyrolysis of Pulverised Coal
,”
J. Cleaner Prod.
,
279
(
1
), p.
123818
.
17.
Hu
,
Y.
,
Naito
,
S.
,
Kobayashi
,
N.
, and
Hasatani
,
M.
,
2000
, “
CO2, NOx and SO2 Emissions From the Combustion of Coal With High Oxygen Concentration Gases
,”
Fuel
,
79
(
15
), pp.
1925
1932
.
18.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.
19.
Tan
,
Y.
,
Croiset
,
E.
,
Douglas
,
M. A.
, and
Thambimuthu
,
K. V.
,
2006
, “
Combustion Characteristics of Coal in a Mixture of Oxygen and Recycled Flue Gas
,”
Fuel
,
85
(
4
), pp.
507
512
.
20.
Scheffknecht
,
G.
,
Al-Makhadmeh
,
L.
,
Schnell
,
U.
, and
Maier
,
J.
,
2011
, “
Oxy-Fuel Coal Combustion—A Review of the Current State-of-the-Art
,”
Int. J. Greenhouse Gas Control
,
5
(
Suppl. 1
), pp.
S16
S35
.
21.
ETSAP
,
2010
, “
Energy Technology System Analysis Programme: Industrial Combustion Boilers
,”
ETSAP
,
Sweden
,
June 17–24
.
22.
Pereira
,
A. M.
, and
Pereira
,
R. M. M.
,
2010
, “
Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal
,”
Energy Econ.
,
32
(
1
), pp.
227
242
.
23.
Mahmoud
,
A.
,
Shuhaimi
,
M.
, and
Samed
,
M. A.
,
2009
, “
A Combined Process Integration and Fuel Switching Strategy for Emissions Reduction in Chemical Process Plants
,”
Energy
,
34
(
2
), pp.
190
195
.
24.
Wang
,
L.
,
Chen
,
Z.
,
Zhang
,
T.
, and
Zeng
,
K.
,
2019
, “
Effect of Excess Air/Fuel Ratio and Methanol Addition on the Performance, Emissions, and Combustion Characteristics of a Natural Gas/Methanol Dual-Fuel Engine
,”
Fuel
,
255
(
1
), p.
115799
.
25.
Zhang
,
P.
,
Liao
,
W.
,
Kumar
,
A.
,
Zhang
,
Q.
, and
Ma
,
H.
,
2020
, “
Characterization of Sugarcane Bagasse Ash as a Potential Supplementary Cementitious Material: Comparison With Coal Combustion Fly Ash
,”
J. Cleaner Prod.
,
277
(
1
), p.
123834
.
26.
Stančin
,
H.
,
Mikulčić
,
H.
,
Wang
,
X.
, and
Duić
,
N.
,
2020
, “
A Review on Alternative Fuels in Future Energy System
,”
Renewable Sustainable Energy Rev.
,
128
, p.
109927
.
27.
Nunes
,
L. J. R.
,
Matias
,
J. C. O.
, and
Catalão
,
J. P. S.
,
2014
, “
A Review on Torrefied Biomass Pellets as a Sustainable Alternative to Coal in Power Generation
,”
Renewable Sustainable Energy Rev.
,
40
(
1
), pp.
153
160
.
28.
Ghorbani
,
A.
,
Bazooyar
,
B.
,
Shariati
,
A.
,
Jokar
,
S. M.
,
Ajami
,
H.
, and
Naderi
,
A.
,
2011
, “
A Comparative Study of Combustion Performance and Emission of Biodiesel Blends and Diesel in an Experimental Boiler
,”
Appl. Energy
,
88
(
12
), pp.
4725
4732
.
29.
Zhang
,
Q.
,
Yi
,
H.
,
Yu
,
Z.
,
Gao
,
J.
,
Wang
,
X.
,
Lin
,
H.
, and
Shen
,
B.
,
2018
, “
Energy-Exergy Analysis and Energy Efficiency Improvement of Coal-Fired Industrial Boilers Based on Thermal Test Data
,”
Appl. Therm. Eng.
,
144
(
1
), pp.
614
627
.
30.
Strobel
,
R.
,
Waldner
,
M. H.
, and
Gablinger
,
H.
,
2018
, “
Highly Efficient Combustion With Low Excess Air in a Modern Energy-From-Waste (EfW) Plant
,”
Waste Manage.
,
73
(
1
), pp.
301
306
.
31.
EPA, U.S.
,
2001
, “
Guide to Industrial Assessments for Pollution and Energy Efficiency
,” EPA/625/R-99/003,
Environmental Protection Agency
,
Cincinnati, OH
.
32.
Bhatia
,
A.
,
2012
, “
Improving Energy Efficiency of Boiler Systems
,”
Continuing Education and Development Engineering
, pp.
1
55
, https://www.cedengineering.com/userfiles/Improving%20Energy%20Efficiency%20Boilers%20R1.pdf
33.
Nussbaumer
,
T.
,
2003
, “
Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction
,”
Energy Fuels
,
17
(
6
), pp.
1510
1521
.
34.
Carpenter
,
K.
, and
Kissock
,
J. K.
,
2005
, “
Quantifying Savings From Improved Boiler Operation
,”
Industrial Energy Technology Conference
,
New Orleans, LA
,
May 10–13
, pp.
36
48
.
35.
Carpenter
,
K.
, and
Kissock
,
K.
,
2006
, “
Energy Efficient Process Heating: Managing Air Flow
,”
SAE World Congress and Exhibition
,
Detroit, MI
,
Apr. 3–6
, p.
158
.
36.
Alcántara
,
V.
,
Cadavid
,
Y.
,
Sánchez
,
M.
,
Uribe
,
C.
,
Echeverri-Uribe
,
C.
,
Morales
,
J.
,
Obando
,
J.
, and
Amell
,
A.
,
2018
, “
A Study Case of Energy Efficiency, Energy Profile, and Technological Gap of Combustion Systems in the Colombian Lime Industry
,”
Appl. Therm. Eng.
,
128
(
1
), pp.
393
401
.
37.
Saidur
,
R.
,
Ahamed
,
J. U.
, and
Masjuki
,
H. H.
,
2010
, “
Energy, Exergy and Economic Analysis of Industrial Boilers
,”
Energy Policy
,
38
(
5
), pp.
2188
2197
.
38.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Ther. Sci. Eng. Prog.
,
6
(
1
), pp.
268
289
.
39.
Harrell
,
G.
,
2004
, “
Boiler Blowdown Energy Recovery
,”
Energy Eng.
,
101
(
5
), pp.
32
42
.
40.
Sunudas
,
T.
, and
Prince
,
M. G.
,
2013
, “
Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector
,”
Int. J. Eng. Res. Appl.
,
3
(
5
), pp.
35
38
.
41.
Nadel
,
S.
, and
Ungar
,
L.
,
2019
, “
Halfway There: Energy Efficiency Can Cut Energy Use and Greenhouse Gas Emissions in Half by 2050
,”
ACEEE
,
Washington, DC
,
Sept. 18
.
42.
Errigo
,
A
,
Choi
,
J.-K
, and
Kissock
,
K
,
2022
, “
Techo-Economic-Environmental Impacts of Industrial Energy Assessment: Sustainable Industrial Motor Systems of Small and Medium-Sized Enterprises
,”
Sustain. Energy Technol. Assess.
,
49
.
43.
Kissock
,
K.
,
2003
, “
Student Learning At The University Of Dayton Industrial Assessment Center
,”
ASEE 2003 Annual Conference
,
Nashiville, TN
.
44.
Carpenter
,
K.
, and
Kissock
,
K.
,
1997
, “
Energy Efficient Process Heating: Insulation and Thermal Mass
,”
SAE Transactions
,
115
(
3
), pp.
429
438
.
45.
Bureau of Economic Analysis
,
2021
, “
North American Industry Classification System
,” https://www.bea.gov/
46.
National Association of Manufacturers
,
2020
, “
2020 Ohio Manufacturing Facts
,” https://www.nam.org/state-manufacturing-data/2020-ohio-manufacturing-facts/
47.
U.S. Energy Information Administration
,
2017
, “
Energy-Related CO2 Emission Data Tables
,” https://www.eia.gov/environment/emissions/state/
You do not currently have access to this content.