Abstract

A computational fluid dynamics (CFD) model of the two-phase flow is presented to simulate isothermal, turbulent, upward bubbly flow in a pipeline for the purpose of forecasting a mean pressure reduction along the pipe (a three-dimensional (3D) multiphase flow, by Eulerian–Eulerian strategy combined with population balance model (PBM)). A set of experimental data from the literature for water (liquid) and air (gas) in an isothermal pipe is used where the internal diameter of which is 200 mm; it tends to analyze radial void fraction and bubble diameter distributions as well as the axial pressure distribution of fluid flow. The CFD model is applied to grids of minimum control volumes. The interfacial forces, including nondrag and drag forces, where the former can be categorized into turbulent scattering, lift, and wall lubrication, have been noticed in simulations. The comparison between CFD forecasts with experimental data demonstrates that the coring phenomena plus observed wall peaking could be predicted with this CFD-PBM modeling approach. The primary aim of this study was to anticipate the axial pressure distribution of bubbly flow in the pipe by CFD modeling in a large vertical pipe. Acceptable agreement between models predictions and experimental data indicates that CFD can be a beneficial method for investigating pressure drop of an upward and multiphase flow.

References

1.
Dukhin
,
S.
,
Kovalchuk
,
V.
,
Gochev
,
G.
,
Lotfi
,
M.
,
Krzan
,
M.
,
Malysa
,
K.
, and
Miller
,
R.
,
2015
, “
Dynamics of Rear Stagnant Cap Formation at the Surface of Spherical Bubbles Rising in Surfactant Solutions at Large Reynolds Numbers Under Conditions of Small Marangoni Number and Slow Sorption Kinetics
,”
Adv. Colloid Interface Sci.
,
222
, pp.
260
274
.
2.
Maher
,
D.
,
Hana
,
A.
, and
Habib
,
S.
,
2020
, “
New Correlations for Two Phase Flow Pressure Drop in Homogeneous Flows Model
,”
Therm. Eng.
,
67
(
2
), pp.
92
105
.
3.
Dukhin
,
S.
,
Lotfi
,
M.
,
Kovalchuk
,
V.
,
Bastani
,
D.
, and
Miller
,
R.
,
2016
, “
Dynamics of Rear Stagnant Cap Formation at the Surface of Rising Bubbles in Surfactant Solutions at Large Reynolds and Marangoni Numbers and for Slow Sorption Kinetics
,”
Colloids Surf., A
,
492
, pp.
127
137
.
4.
Bastani
,
D.
,
Fayzi
,
P.
,
Lotfi
,
M.
, and
Arzideh
,
S. M.
,
2018
, “
CFD Simulation of Bubble in Flow Field: Investigation of Dynamic Interfacial Behaviour in Presence of Surfactant Molecules
,”
Colloids Interface Sci. Commun.
,
27
, pp.
1
10
.
5.
Lyons
,
W.
,
1996
,”
Standard Handbook of Petroleum & Natural Gas Engineering
,
1
,
Gulf Publishing Company
,
Houston, TX
, p.
1456
.
6.
Fayzi
,
P.
,
Bastani
,
D.
,
Lotfi
,
M.
, and
Ghamangiz Khararoodi
,
M.
,
2019
, “
The Effects of Bubble Detachment Shape on Rising Bubble Hydrodynamics
,”
Sci. Iran.
,
26
(
3
), pp.
1546
1554
.
7.
Fayzi
,
P.
,
Bastani
,
D.
,
Lotfi
,
M.
, and
Miller
,
R.
,
2021
, “
Influence of Surface-Modified Nanoparticles on the Hydrodynamics of Rising Bubbles
,”
Chem. Eng. Technol.
,
44
(
3
), pp.
513
520
.
8.
Fayzi
,
P.
,
Bastani
,
D.
, and
Lotfi
,
M.
,
2020
, “
A Note on the Synergistic Effect of Surfactants and Nanoparticles on Rising Bubble Hydrodynamics
,”
Chem. Eng. Process.: Process Intensif.
,
155
, p.
108068
.
9.
Brodkey
,
R. S.
,
1995
,
The Phenomena of Fluid Motions
,
Brodkey Publishing
,
San Diego, CA
.
10.
Jones
,
W.
, and
Launder
,
B.
,
1973
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
.
11.
Jones
,
W.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
12.
Lopez de Bertodano
,
M.
,
1992
, “
Turbulent Bubbly Two-Phase Flow in a Triangular Duct
,”
Ph. D. thesis
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
13.
Hulburt
,
H. M.
, and
Katz
,
S.
,
1964
, “
Some Problems in Particle Technology: A Statistical Mechanical Formulation
,”
Chem. Eng. Sci.
,
19
(
8
), pp.
555
574
.
14.
Ramkrishna
,
D.
,
2000
,
Population Balances: Theory and Applications to Particulate Systems in Engineering
,
Elsevier
,
San Diego, CA
.
15.
Pan
,
H.
,
Liu
,
Q.
, and
Luo
,
Z.-H.
,
2018
, “
Modeling and Simulation of Particle Size Distribution Behavior in Gas–Liquid–Solid Polyethylene Fluidized Bed Reactors
,”
Powder Technol.
,
328
, pp.
95
107
.
16.
Chen
,
G.
,
He
,
S.
,
Li
,
Y.
, and
Wang
,
Q.
,
2016
, “
Modeling Dynamics of Agglomeration, Transport, and Removal of Al2O3 Clusters in the Rheinsahl–Heraeus Reactor Based on the Coupled Computational Fluid Dynamics-Population Balance Method Model
,”
Ind. Eng. Chem. Res.
,
55
(
25
), pp.
7030
7042
.
17.
Silva
,
L. F. L.
,
Damian
,
R.
, and
Lage
,
P. L.
,
2008
, “
Implementation and Analysis of Numerical Solution of the Population Balance Equation in CFD Packages
,”
Comput. Chem. Eng.
,
32
(
12
), pp.
2933
2945
.
18.
Ekambara
,
K.
,
Sanders
,
R.
,
Nandakumar
,
K.
, and
Masliyah
,
J.
,
2008
, “
CFD Simulation of Bubbly Two-Phase Flow in Horizontal Pipes
,”
Chem. Eng. J.
,
144
(
2
), pp.
277
288
.
19.
Hassani
,
M.
,
Bagheri Motlagh
,
M.
, and
Kouhikamali
,
R.
,
2020
, “
Numerical Investigation of Upward Air-Water Annular, Slug and Bubbly Flow Regimes
,”
J. Comput. Appl. Res. Mech. Eng.
,
9
(
2
), pp.
331
341
.
20.
Chang
,
Y. S.
,
Ganesan
,
T.
, and
Lau
,
K.
,
2008
, “
Comparison Between Empirical Correlation and Computational Fluid Dynamics Simulation for the Pressure Gradient of Multiphase Flow
,”
Proceedings of the World Congress on Engineering
,
London, UK
,
July 2–4
.
21.
Ghosh
,
S.
,
Das
,
G.
, and
Das
,
P. K.
,
2011
, “
Simulation of Core Annular in Return Bends—A Comprehensive CFD Study
,”
Chem. Eng. Res. Des.
,
89
(
11
), pp.
2244
2253
.
22.
Vaidheeswaran
,
A.
, and
Hibiki
,
T.
,
2017
, “
Bubble-Induced Turbulence Modeling for Vertical Bubbly Flows
,”
Int. J. Heat Mass Transfer
,
115
, pp.
741
752
.
23.
Höhne
,
T.
, and
Mehlhoop
,
J.-P.
,
2014
, “
Validation of Closure Models for Interfacial Drag and Turbulence in Numerical Simulations of Horizontal Stratified Gas–Liquid Flows
,”
Int. J. Multiphase Flow
,
62
, pp.
1
16
.
24.
Pakhomov
,
M.
, and
Terekhov
,
V.
,
2016
, “
Modeling of the Flow Patterns and Heat Transfer in a Turbulent Bubbly Polydispersed Flow Downstream of a Sudden Pipe Expansion
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1251
1262
.
25.
Alizadehdakhel
,
A.
,
Rahimi
,
M.
,
Sanjari
,
J.
, and
Alsairafi
,
A. A.
,
2009
, “
CFD and Artificial Neural Network Modeling of Two-Phase Flow Pressure Drop
,”
Int. Commun. Heat Mass Transfer
,
36
(
8
), pp.
850
856
.
26.
Peña-Monferrer
,
C.
,
Passalacqua
,
A.
,
Chiva
,
S.
, and
Muñoz-Cobo
,
J. L.
,
2014
, “
CFD Modelling of Bubbly Flow in Adiabatic Upward Pipe Using a Solver Based on OpenFOAM® With the Quadrature Method of Moments
,”
ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated With the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
,
Chicago, IL
,
August
.
27.
Ohnuki
,
A.
, and
Akimoto
,
H.
,
2000
, “
Experimental Study on Transition of Flow Pattern and Phase Distribution in Upward Air–Water Two-Phase Flow Along a Large Vertical Pipe
,”
Int. J. Multiphase Flow
,
26
(
3
), pp.
367
386
.
28.
Xu
,
X.-X.
, and
Gong
,
J.
,
2008
, “
A United Model for Predicting Pressure Wave Speeds in Oil and Gas Two-Phase Pipeflows
,”
J. Pet. Sci. Eng.
,
60
(
3–4
), pp.
150
160
.
29.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics ICMF’98 Lyon
,”
Third International Conference on Multiphase Flow, CD File M, Invited Lectures P
,
Lyon, France
,
January
.
30.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.
31.
Kuo
,
T.
,
Pan
,
C.
,
Chieng
,
C.
, and
Yang
,
A.
,
1997
, “
Eulerian–Lagrangian Computations on Phase Distribution of Two-Phase Bubbly Flows
,”
Int. J. Numer. Methods Fluids
,
24
(
6
), pp.
579
593
.
32.
Lucas
,
D.
,
Krepper
,
E.
, and
Prasser
,
H.-M.
,
2001
, “
Prediction of Radial Gas Profiles in Vertical Pipe Flow on the Basis of Bubble Size Distribution
,”
Int. J. Therm. Sci.
,
40
(
3
), pp.
217
225
.
33.
Drew
,
D. A.
, and
Lahey
,
R. T., Jr.
,
1979
, “
Application of General Constitutive Principles to the Derivation of Multidimensional Two-Phase Flow Equations
,”
Int. J. Multiphase Flow
,
5
(
4
), pp.
243
264
.
34.
Takagi
,
S.
, and
Matsumoto
,
Y.
,
1998
, “
Numerical Study on the Forces Acting on a Bubble and Particle
,”
Proceedings of the Third International Conference on Multiphase Flow
,
Lyon, France
,
December
.
35.
Drew
,
D.
, and
Lahey
,
R. Jr.
,
1987
, “
The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
113
121
.
36.
Peterson
,
K.
,
1992
, “
Etude Experimentale et Numerique des Ecoulements Diphasiques Dans les Reacteurs Chimiques
,”
Ph.D. thesis
,
Universite Claude Bernard
,
Lyon
.
37.
Antal
,
S.
,
Lahey
,
R. Jr.
, and
Flaherty
,
J.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.
38.
Chan-Mou
,
T.
,
1947
, “
Mean Value and Correlated Problems Connected With the Motion of Small Particles Suspended in a Turbulent Flow
,”
Ph.D. thesis
,
Technische Universiteit Delft
,
Delft, Netherlands
.
39.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.
40.
Launder
,
B.
, and
Spalding
,
D.
,
1972
,
Mathematical Model of Turbulence
,
Academic Press
,
London
.
41.
Simonin
,
C.
, and
Viollet
,
P.
,
1990
, “
Predictions of an Oxygen Droplet Pulverization in a Compressible Subsonic Coflowing Hydrogen Flow
,”
Numer. Methods Multiphase Flows
,
91
(
2
), pp.
65
82
.
42.
Viollet
,
P.
, and
Simonin
,
O.
,
1994
, “
Modelling Dispersed Two-Phase Flows: Closure, Validation and Software Development
,”
Appl. Mech. Rev.
,
47
(
6s
), pp.
S80
S84
.
43.
Wu
,
Q.
,
Kim
,
S.
,
Ishii
,
M.
, and
Beus
,
S.
,
1998
, “
One-Group Interfacial Area Transport in Vertical Bubbly Flow
,”
Int. J. Heat Mass Transfer
,
41
(
8–9
), pp.
1103
1112
.
44.
Hibiki
,
T.
, and
Ishii
,
M.
,
2002
, “
Development of One-Group Interfacial Area Transport Equation in Bubbly Flow Systems
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2351
2372
.
45.
Yao
,
W.
, and
Morel
,
C.
,
2004
, “
Volumetric Interfacial Area Prediction in Upward Bubbly Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
307
328
.
46.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns
,”
AIChE J.
,
36
(
10
), pp.
1485
1499
.
47.
Hibiki
,
T.
, and
Ishii
,
M.
,
2000
, “
One-Group Interfacial Area Transport of Bubbly Flows in Vertical Round Tubes
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2711
2726
.
48.
Sevik
,
M.
, and
Park
,
S.
,
1973
, “
The Splitting of Drops and Bubbles by Turbulent Fluid Flow
,”
J. Fluid. Eng.
,
95
(
1
), pp.
53
60
.
49.
Hibiki
,
T.
,
Ishii
,
M.
, and
Xiao
,
Z.
,
2001
, “
Axial Interfacial Area Transport of Vertical Bubbly Flows
,”
Int. J. Heat Mass Transfer
,
44
(
10
), pp.
1869
1888
.
50.
Chen
,
P.
,
Sanyal
,
J.
, and
Duduković
,
M.
,
2005
, “
Numerical Simulation of Bubble Columns Flows: Effect of Different Breakup and Coalescence Closures
,”
Chem. Eng. Sci.
,
60
(
4
), pp.
1085
1101
.
51.
Chen
,
P.
,
Sanyal
,
J.
, and
Dudukovic
,
M.
,
2004
, “
CFD Modeling of Bubble Columns Flows: Implementation of Population Balance
,”
Chem. Eng. Sci.
,
59
(
22–23
), pp.
5201
5207
.
52.
Ishii
,
M.
, and
Hibiki
,
T.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Springer
,
New York
.
53.
Serizawa
,
A.
,
1988
, “
Phase Distribution in Two-Phase Flow
,”
Transient Phenom. Multiphase Flow
, pp.
179
224
.
54.
Zun
,
I.
,
1988
, “
Transition From Wall Peaking to Core Void Peaking in Turbulent Bubbly Flow
,”
Transient Phenom. Multiphase Flow
, pp.
225
245
.
55.
Theofanous
,
T.
, and
Sullivan
,
J.
,
1982
, “
Turbulence in Two-Phase Dispersed Flows
,”
J. Fluid Mech.
,
116
, pp.
343
362
.
You do not currently have access to this content.