Abstract

Rolling turbines are fluid motors that may be used in pico hydro applications at very small hydraulic heads of below 1 m and can operate even with untapped (waste) water. The present study proposes a theory of their operation, based on the hydrodynamic stability of vortices. A solid body vortex may be transformed due to viscosity into a more stable potential vortex. Circulation generated in the vortex core is transmitted to a rotor. The rotor, which is the key element, performs a precession motion, rotating concurrently around its axis while processing around another (precession) axis. The mechanical power output is drawn from the precession motion via a shaft. The theoretical results were experimentally validated with three variants of the rotors: one truncated cone and two spherical rotors. It was concluded that the tested rolling turbines operate with an efficiency of 43% to 48% at a hydraulic head of between 0.5 and 1.6 m.

References

1.
Woias
,
P.
,
2012
, “
Micro Energy Harvesting: From Basic Research to Practical Application
,”
Conference on Energy Harvesting 2012
,
London
.
2.
Stein-Brzozowska
,
G.
,
Bergins
,
C.
,
Kukoski
,
A.
,
Wu
,
S.
,
Agraniotis
,
M.
, and
Kakaras
,
E.
,
2016
, “
The Current Trends in Conventional Power Plant Technology on Two Continents From the Perspective of Engineering, Procurement, and Construction Contractor and Original Equipment Manufacturer
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
044501
.
3.
Prasad
,
S.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
020301
.
4.
Manzano-Agugliaro
,
F.
,
Taher
,
M.
,
Zapata-Sierra
,
A.
,
Juaidi
,
A.
, and
Montoya
,
F. G.
,
2017
, “
An Overview of Research and Energy Evolution for Small Hydropower in Europe
,”
Renew. Sustain. Energy Rev.
,
75
, pp.
476
489
.
5.
Balkhair
,
K. S.
, and
Rahman
,
K. U.
,
2017
, “
Sustainable and Economical Small-Scale and Low-Head Hydropower Generation: A Promising Alternative Potential Solution for Energy Generation at Local and Regional Scale
,”
Appl. Energy
,
188
, pp.
378
391
.
6.
Energy Sector Management Assistance Program (ESMAP). Technical and Economic Assessment of Off-Grid, Mini-Grid and Grid Electrification Technologies—Summary Report 2006
,”
World Bank Energy Unit
, ESMAP Technical Paper 121/07.
7.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M. R.
,
Saravani
,
M. S.
, and
Amano
,
R. S.
,
2019
, “
Utilization of Hydroturbines in Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062011
.
8.
Powell
,
D.
,
Ebrahimi
,
A.
,
Nourbakhsh
,
S.
,
Meshkahaldini
,
M.
, and
Bilton
,
A. M.
,
2018
, “
Design of Pico-Hydro Turbine Generator Systems for Self-powered Electrochemical Water Disinfection Devices
,”
Renewable Energy
,
123
, pp.
590
602
.
9.
Alvarez
,
E. A.
,
Rico-Secades
,
M.
,
Suárez
,
D. F.
,
Gutiérrez-Trashorras
,
A. J.
, and
Fernández-Francos
,
J.
,
2016
, “
Obtaining Energy From Tidal Microturbines: A Practical Example in the Nalón River
,”
Appl. Energy
,
183
, pp.
100
112
.
10.
de Oliveira e Silva
,
G.
, and
Hendrick
,
P.
,
2016
, “
Pumped Hydro Energy Storage in Buildings
,”
Appl. Energy
,
179
, pp.
1242
1250
.
11.
Rostami
,
A. B.
, and
Fernandes
,
A. C.
,
2015
, “
The Effect of Inertia and Flap on Autorotation Applied for Hydrokinetic Energy Harvesting
,”
Appl. Energy
,
143
, pp.
312
323
.
12.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
.
13.
Williamson
,
S. J.
,
Stark
,
B. H.
, and
Booker
,
J. D.
,
2014
, “
Low Head Pico Hydro Turbine Selection Using a Multi-Criteria Analysis
,”
Renewable Energy
,
61
, pp.
43
50
.
14.
Lahimer
,
A. A.
,
Alghoul
,
M. A.
,
Sopian
,
K.
,
Amin
,
N.
,
Asim
,
N.
, and
Fadhel
,
M. I.
,
2012
, “
Research and Development Aspects of Pico-Hydro Power
,”
Renew. Sustain. Energy Rev.
,
16
(
8
), pp.
5861
5878
.
15.
Zotlöterer
,
F.
,
2003
, “
Hydroelectric Power Plant
,” Patent Application WO2003AT00390.
16.
Rahman
,
M. M.
,
Tan
,
J. H.
,
Fadzlita
,
M. T.
, and
Muzammil
,
A. R. W. K.
,
2017
, “
A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources
,”
IOP Conf Series: Mat. Sci. Eng.
,
217
, p.
012007
.
17.
Sritram
,
P.
, and
Suntivarakorn
,
R.
,
2017
, “
Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water
,”
En. Procedia
,
138
, pp.
646
650
.
18.
Haluza
,
M.
,
Pochylý
,
F.
, and
Rudolf
,
P.
,
2012
, “
The Swirl Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
4
), p.
042034
.
19.
Kim
,
J. W.
,
Jo
,
I. C.
,
Park
,
J. H.
,
Shin
,
Y.
, and
Chung
,
J. T.
,
2017
, “
Theoretical Method of Selecting Number of Buckets for the Design and Verification of a Pelton Turbine
,”
J. Hydraul. Res.
,
55
(
5
), pp.
695
705
.
20.
Ho-Yan
,
B. P.
,
2011
, “
Tesla Turbine for Pico Hydro Applications
,”
Guelph Eng. J.
,
4
, pp.
1
8
.
21.
Sedláček
,
M.
,
1998
,
Ball Water Turbine
,” Patent No. CZ283553.
22.
Sedláček
,
M.
, and
Hostin
,
S.
,
2000
, “
Fluid Machine
,” Patent No. US6139267A.
23.
Polák
,
M.
, and
Dlabal
,
L.
,
2015
, “
Operating Characteristics of a Bladeless Turbine for Irrigation Purposes
,”
Soil Water Res.
,
10
(
4
), pp.
278
283
.
24.
Sedláček
,
M.
,
Maršík
,
F.
, and
Hostin
,
S.
,
2011
, “
Precession Liquid Turbine
,” Patent No. CZ302361s.
25.
Beran
,
V.
,
Sedláček
,
M.
, and
Maršík
,
F.
,
2013
, “
A New Bladeless Hydraulic Turbine
,”
Appl. Energy
,
104
, pp.
978
983
.
26.
PROTUR
,
Applications of the Rolling Turbines in the Czech Republic
, https://www.protur-turbine.com/en/references/, Accessed February 2, 2022.
27.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Landau
,
L. D.
, and
Lifschitz
,
E. M.
,
1987
,
Fluid Mechanics
,
Pergamon Press
,
Oxford
, UK.
29.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
30.
Betz
,
A.
,
1926
,
Wind-Energie und ihre Ausnutzung durch Windmühlen
,
Vandenhoeck
,
Göttingen
.
31.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
(4), pp.
386
392
.
32.
Vít
,
T.
,
Ren
,
M.
,
Trávníček
,
Z.
,
Maršík
,
F.
, and
Rindt
,
C. C. M.
,
2007
, “
The Influence of Temperature Gradient on the Strouhal–Reynolds Number Relationship for Water and Air
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
751
760
.
33.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
, 3rd ed.,
CRC Press
,
Boca Raton, MA
.
You do not currently have access to this content.