Abstract

This work presents the combustion characteristics of coal, petroleum coke (PC), rice straw (RS), mustard cake (MC), and their blends to assess the applicability of blended fuel for thermal power generation. Characterization results show that PC has the highest gross calorific value (GCV) (35,990 kJ/kg) to improve the overall energy density of the blend significantly. Higher volatile matter (VM) present in RS and MC improved the ignition behavior and combustion efficiency of the blend. For 10 °C/min heating rate at 350 °C, with the increase in RS in blends from 10% to 30%, combustion efficiency increased from 12.85% to 32.66%. Synergistic analysis signifies that higher biomass content enhances blends’ combustion characteristics through catalytic effects of alkali oxides present in RS/MC. Thermodynamic analysis (ΔH, ΔG, and ΔS) inferred that RS and MC combustion is easier than coal and PC. With the increase in MC in blends from 10% to 30%, ΔH decreased from 114.81 to 82.31 kJ/mol, ΔG declined from 159.33 to 122.86 kJ/mol, and ΔS improved from −63.59 to −58.14 J/mol · K, indicating blending of biomass improved the combustion.

References

1.
Wang
,
Y.
,
Wu
,
J.
,
Li
,
X.
,
Yu
,
D.
,
Xu
,
M.
, and
Wendt
,
J. O. L.
,
2019
, “
Ash Aerosol Partitioning and Ash Deposition During the Combustion of Petroleum Coke/Natural gas Mixtures
,”
Fuel
,
256
, p.
115982
.
2.
Spliethoff
,
H.
,
Unterberger
,
S.
, and
Hein
,
K. R. G.
,
2004
, “
Status of Co-combustion of Coal and Biomass in Europe
,”
Int. J. Energy Clean Environ.
,
5
(
4
), pp.
407
431
.
3.
Panchuk
,
M.
,
Kryshtopa
,
S.
,
Panchuk
,
A.
,
Kryshtopa
,
L.
,
Dolishnii
,
B.
,
Mandryk
,
I.
, and
Sladkowski
,
A.
,
2019
, “
Perspective for Developing and Using the Torrefaction Technology in Ukraine
,”
Int. J. Energy Clean Environ.
,
20
(
2
), pp.
113
134
.
4.
Dasgupta
,
I.
, and
Das
,
S.
,
2017
, “
Evaluation of Combustion Performance of Petroleum Coke/Rice Straw Blends for Cofiring in a FBC Boiler
,”
Annu. Int. Conf. Proc.
, pp.
2171
2176
.
5.
Tong
,
C.
,
Yang
,
X.
,
Chen
,
G.
,
Zhang
,
Y.
,
Chen
,
L.
,
Zhou
,
Y.
,
He
,
T.
, and
Jin
,
B.
,
2021
, “
Experimental Investigation for the Combustion Characteristics of Blends of Three Kinds of Coal
,”
Fuel
,
300
, p.
120937
.
6.
Janković
,
B.
,
Manić
,
N.
,
Radović
,
I.
,
Janković
,
M.
, and
Rajačić
,
M.
,
2019
, “
Model-Free and Model-Based Kinetics of the Combustion Process of Low Rank Coals With High Ash Contents Using TGA-DTG-DTA-MS and FTIR Techniques
,”
Thermochim. Acta
,
679
, p.
178337
.
7.
Taniguchi
,
M.
,
Kobayashi
,
H.
,
Kiyama
,
K.
, and
Shimogori
,
Y.
,
2009
, “
Comparison of Flame Propagation Properties of Petroleum Coke and Coals of Different Rank
,”
Fuel
,
88
(
8
), pp.
1478
1484
.
8.
Jaygopal
,
J.
,
Palappan
,
K. G.
,
Rajavel
,
M.
,
Guruchandran
,
P. S.
, and
Suresh
,
S.
,
2017
, “
Comparison of Combustion Characteristics of Petcoke and Indian Sub Bituminous Coal in a CFB Test Facility
,”
Int. J. Therm. Technol.
,
7
(
2
), pp.
100
106
.
9.
Song
,
C.
,
Liu
,
K.
,
Gong
,
Z.
, and
Liu
,
Y.
,
2019
, “
Thermogravimetric Analysis of Combustion Characteristics of Coal Gangue and Petroleum Coke Mixture
,”
J. Phys.: Conf. Ser.
,
1324
(
1
), p.
012077
.
10.
Wang
,
C.
,
Wang
,
F.
,
Yang
,
Q.
, and
Liang
,
R.
,
2009
, “
Thermogravimetric Studies of the Behavior of Wheat Straw With Added Coal During Combustion
,”
Biomass Bioenergy
,
33
(
1
), pp.
50
56
.
11.
Magdziarz
,
A.
, and
Wilk
,
M.
,
2013
, “
Thermogravimetric Study of Biomass, Sewage Sludge and Coal Combustion, Energy Conversion and Management
,”
Energy Convers. Manage.
,
75
, pp.
425
430
.
12.
Jayaraman
,
K.
,
Kok
,
M. V.
, and
Gokalp
,
I.
,
2017
, “
Thermogravimetric and Mass Spectrometric (TG-MS) Analysis and Kinetics of Coal-Biomass Blends
,”
Renewable Energy
,
101
, pp.
293
300
.
13.
Wang
,
Q.
,
Wang
,
G.
,
Zhang
,
J.
,
Lee
,
J. Y.
,
Wang
,
H.
, and
Wang
,
C.
,
2018
, “
Combustion Behaviors and Kinetics Analysis of Coal, Biomass and Plastic
,”
Thermochim. Acta
,
669
, pp.
140
148
.
14.
Boumanchar
,
I.
,
Chhiti
,
Y.
,
Alaoui
,
F. E. M.
,
Elkhouakhi
,
M.
,
Dine
,
A. S.
,
Bentiss
,
F.
,
Jama
,
C.
, and
Bensitel
,
M.
,
2019
, “
Investigation of (Co)-combustion Kinetics of Biomass, Coal and Municipal Solid Wastes
,”
Waste Manage.
,
97
, pp.
10
18
.
15.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals–A Review
,”
Prog. Energy Combust. Sci.
,
84
, p.
100899
.
16.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Towards Enhanced Understanding of Synergistic Effect in Co-pyrolysis of Pinewood and Polycarbonate
,”
Appl. Energy
,
289
, p.
116662
.
17.
Burra
,
K. R. G.
, and
Gupta
,
A. K.
,
2019
, “
Modelling of Biomass Pyrolysis Kinetics Using Sequential Multi-step Reaction Model
,”
Fuel
,
237
, pp.
1057
1067
.
18.
Kumar
,
P.
, and
Nandi
,
B. K.
,
2021
, “
Combustion Characteristics of High ash Indian Coal, Wheat Straw, Wheat Husk and Their Blends
,”
Mater. Sci. Energy Technol.
,
4
, pp.
274
281
.
19.
Xinjie
,
L.
,
Singh
,
S.
,
Yang
,
H.
,
Wu
,
C.
, and
Zhang
,
S.
,
2021
, “
A Thermogravimetric Assessment of the Tri-combustion Process for Coal, Biomass and Polyethylene
,”
Fuel
,
287
, p.
119355
.
20.
García
,
R.
,
Pizarro
,
C.
,
Álvarez
,
A.
,
Lavín
,
A. G.
, and
Bueno
,
J. L.
,
2015
, “
Study of Biomass Combustion Wastes
,”
Fuel
,
148
, pp.
152
159
.
21.
Behera
,
D.
, and
Nandi
,
B. K.
,
2021
, “
Effect of Coal Particle Density on Coal Properties and Combustion Characteristics
,”
Powder Technol.
,
382
, pp.
594
604
.
22.
Prabhakaran
,
S. P.
,
Swaminathan
,
G.
, and
Joshi
,
V. V.
,
2021
, “
Thermogravimetric Analysis of Hazardous Waste: Pet-Coke, by Kinetic Models and Artificial Neural Network Modeling
,”
Fuel
,
287
, p.
119470
.
23.
Liu
,
X.
,
Chen
,
M.
, and
Wei
,
Y.
,
2015
, “
Combustion Behavior of Corncob/Bituminous Coal and Hardwood/Bituminous Coal
,”
Renewable Energy
,
81
, pp.
355
365
.
24.
Aich
,
S.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2019
, “
Utilization of Sal Leaves and Sal Leaves Char to Improve the Combustion Performance of Reject Coal
,”
Energy Sources, Part A
,
41
(
19
), pp.
2299
2312
.
25.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effect During Co-pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
26.
Yin
,
Y.
,
Yang
,
B.
,
Yin
,
J.
,
Tian
,
H.
,
Zhang
,
W.
,
Cheng
,
S.
,
Hu
,
Z.
, and
Xu
,
H.
,
2020
, “
Kinetic Analysis of Co-firing of Corn Stalk and Paper Sludge Using Model-Fitting and Model-Free Methods
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042301
.
27.
Zhang
,
Y.
,
Guo
,
Y.
,
Cheng
,
F.
,
Yan
,
K.
, and
Cao
,
Y.
,
2015
, “
Investigation of Combustion Characteristics and Kinetic of Coal Gangue With Different Feedstock Properties by Thermogravimetric Analysis
,”
Thermochimcica Acta
,
614
, pp.
137
148
.
28.
Ken
,
B. S.
,
Aich
,
S.
,
Saxena
,
V. K.
, and
Nandi
,
B. K.
,
2018
, “
Combustion Behavior of KOH Desulphurized Coals Assessed by TGA-DTG
,”
Energy Sources, Part A
,
40
(
20
), pp.
2458
2466
.
29.
Mishra
,
R. K.
, and
Mohnaty
,
K.
,
2020
, “
Kinetic Analysis and Pyrolysis Behaviour of Waste Biomass Towards Its Bioenergy Potential
,”
Bioresour. Technol.
,
311
, p.
123480
.
30.
Muthuraman
,
M.
,
Namioka
,
T.
, and
Yoshikawa
,
K.
,
2010
, “
A Comparative Study on Co-combustion Performance of Municipal Solid Waste and Indonesian Coal With High ash Indian Coal: A Thermogravimetric Analysis
,”
Fuel Process. Technol.
,
91
(
5
), pp.
550
558
.
31.
Behera
,
D.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2020
, “
Studies on Combustion Characteristics of Density by Density Analysed Coal
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012301
.
You do not currently have access to this content.