Abstract

In this article, two approaches are presented dealing with common challenges of two-dimensional boundary layer measurements with hot wire anemometry under challenging test conditions. Novel procedures for accurate determination of the sensor position and correction of the wall heat effect were developed and tested at high freestream velocities of about M1 = 0.3 and thin boundary layers (δ99 = 0.7 − 3.5 mm) of different transitional state in a low-density environment. First, a novel procedure for automatized determination of the accurate hot wire sensor position relative to the wall is presented. The quantification and correction of possible subminiature sensor misalignments is achieved by taking advantage of the linear nature of the laminar sublayer of each boundary layer. The statistical approaches for identification and verification of the linear sublayer demonstrate satisfying results of minimized position uncertainties of about 24 μm. Second, a highly adaptable method for correction of the well-known wall heat effect is presented. In contrary to a series of static correction approaches, the biased velocity information is corrected by optimizing the parameters of an exponential approach, where the correction term is optimized for each boundary layer individually. This novel approach resolves the problem of the limited applicability of static correction methods, caused by system inherent measurement uncertainties.

References

1.
Orlando
,
A. F.
,
Moffat
,
Robert J.
, and
Kays
,
W. M.
,
1974
, “
Turbulent Transport of Heat and Momentum in a Boundary Layer Subject to Deceleration, Suction and Variable Wall Temperature
.”
2.
Bhatia
,
J. C.
,
Durst
,
F.
, and
Jovanovic
,
J.
,
1982
, “
Corrections of Hot-Wire Anemometer Measurements Near Walls
,”
J. Fluid Mech.
,
122
(
1
), p.
411
.
3.
Bourassa
,
C.
, and
Thomas
,
F. O.
,
2009
, “
An Experimental Investigation of a Highly Accelerated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
634
, p.
359
.
4.
Bruun
,
H.
,
1995
,
Hot-wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
Oxford
.
5.
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2020
, “
A Comparison of Turbulence Levels From PIV and CTA Downstream of a Low-Pressure Turbine Cascade at High-Speed Flow Conditions
,”
ASME J. Turbomach.
,
142
(
7
), p.
071008
.
6.
Chew
,
Y. T.
,
Khoo
,
B. C.
, and
Li
,
G. L.
,
1998
, “
An Investigation of Wall Effects on Hot-Wire Measurements Using a Bent Sublayer Probe
,”
Meas. Sci. Technol.
,
9
(
1
), pp.
67
85
.
7.
Cochran
,
W. G.
,
1934
, “
The Distribution of Quadratic Forms in a Normal System, With Applications to the Analysis of Covariance
,”
Math. Proc. Cambridge Philos. Soc.
,
30
(
2
), pp.
178
191
.
8.
Devenport
,
W. J.
,
Evans
,
G. P.
, and
Sutton
,
E. P.
,
1990
, “
A Traversing Pulsed-Wire Probe for Velocity Measurements Near a Wall
,”
Exp. Fluids
,
8
(
6
), pp.
336
342
.
9.
Dixit
,
S. A.
, and
Ramesh
,
O. N.
,
2008
, “
Pressure-Gradient-Dependent Logarithmic Laws in Sink Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
615
, pp.
445
475
.
10.
DuMouchel
,
W. H.
, and
O’Brien
,
F. L.
,
1989
, “
Integrating a Robust Option Into a Multiple Regression Computing Environment
,”
Computing Science and Statistics : Proceedings of the 21st Symposium on the Interface
,
Alexandria, VA
.
11.
Durst
,
F.
,
Shi
,
J.-M.
, and
Breuer
,
M.
,
2002
, “
Numerical Prediction of Hot-Wire Corrections Near Walls
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
241
250
.
12.
Durst
,
F.
,
Zanoun
,
E.-S.
, and
Pashtrapanska
,
M.
,
2001
, “
In Situ Calibration of Hot Wires Close to Highly Heat-Conducting Walls
,”
Exp. Fluids
,
31
(
1
), pp.
103
110
.
13.
Fahrmeir
,
L.
,
Künstler
,
R.
,
Pigeot
,
I.
, and
Tutz
,
G.
,
2004
,
Statistik: Der Weg Zur Datenanalyse
, 5th ed.,
Springer
,
Berlin/Heidelberg/New York
.
14.
Holland
,
P. W.
, and
Welsch
,
R. E.
,
1977
, “
Robust Regression Using Iteratively Reweighted Least-Squares
,”
Commun. Stat. Theory Methods
,
6
(
9
), pp.
813
827
.
15.
Huber
,
P. J.
, and
Ronchetti
,
E. M.
,
2011
,
Robust Statistics
, (
Wiley Series in Probability and Statistics
), 2nd ed., Vol.
693
,
Wiley
,
New York
.
16.
Hultmark
,
M.
,
Vallikivi
,
M.
,
Bailey
,
S. C. C.
, and
Smits
,
A. J.
,
2013
, “
Logarithmic Scaling of Turbulence in Smooth- and Rough-Wall Pipe Flow
,”
J. Fluid Mech.
,
728
, pp.
376
395
.
17.
Hutchins
,
N.
, and
Choi
,
K.-S.
,
2002
, “
Accurate Measurements of Local Skin Friction Coefficient Using Hot-Wire Anemometry
,”
Prog. Aerosp. Sci.
,
38
(
4–5
), pp.
421
446
.
18.
Hutchins
,
N.
,
Nickels
,
T. B.
,
Marusic
,
I.
, and
Chong
,
M. S.
,
2009
, “
Hot-Wire Spatial Resolution Issues in Wall-Bounded Turbulence
,”
J. Fluid Mech.
,
635
, p.
103
.
19.
Jørgensen
,
F. E.
,
2002
,
How to Measure Turbulence With Hot-Wire Anemometers: A Practical Guide
, 9040U6151,
Dantec Dynamics
,
Skovlunde, Denmark
.
20.
Kerho
,
M. F.
,
1995
, “
Effect of Large Distributed Roughness Near an Airfoil Leading Edge on Boundary Layer Development and Transition
,”
Ph.D. thesis
,
University of Illinois at Urbana-Champaign
,
Kerho, Urbana, IL
.
21.
Khoo
,
B. C.
,
Chew
,
Y. T.
, and
Teo
,
C. J.
,
2001
, “
Near-Wall Hot-Wire Measurements
,”
Exp. Fluids
,
31
(
5
), pp.
494
505
.
22.
Kiock
,
R.
,
Laskowski
,
G.
, and
Hoheisel
,
H.
,
1982
,
Die Erzeugung höherer Turbulenzgrade in der Messstrecke des Hochgeschwindigkeits-Gitterwindkanals: Braunschweig, zur Simulation turbomaschinenähnlicher Bedingungen
.
DFVLR-Forschungsbericht
,
(DFVLR-FB 82-25)
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
24.
Krishnamoorthy
,
L. V.
,
Wood
,
D. H.
,
Antonia
,
R. A.
, and
Chambers
,
A. J.
,
1985
, “
Effect of Wire Diameter and Overheat Ratio Near a Conducting Wall
,”
Exp. Fluids
,
3
(
3
), pp.
121
127
.
25.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1999
, “
Correction of Hot-Wire Measurements in the Near-Wall Region
,”
Exp. Fluids
,
26
(
5
), pp.
475
477
.
26.
Monty
,
J. P.
,
Harun
,
Z.
, and
Marusic
,
I.
,
2011
, “
A Parametric Study of Adverse Pressure Gradient Turbulent Boundary Layers
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
575
585
.
27.
Nickels
,
T. B.
,
2004
, “
Inner Scaling for Wall-Bounded Flows Subject to Large Pressure Gradients
,”
J. Fluid Mech.
,
521
, pp.
217
239
.
28.
Polyakov
,
A. F.
, and
Shindin
,
S. A.
,
1978
, “
Peculiarities of Hot-Wire Measurements of Mean Velocity and Temperature in the Wall Vicinity
,”
Lett. Heat Mass Transfer
,
5
(
1
), pp.
53
58
.
29.
Sheskin
,
D. J.
,
2007
,
Handbook of Parametric and Nonparametric Statistical Procedures
, 4th ed.,
Chapman & Hall/CRC
,
Boca Raton, FL
.
30.
Street
,
J. O.
,
Carroll
,
R. J.
, and
Ruppert
,
D.
,
1988
, “
A Note on Computing Robust Regression Estimates Via Iteratively Reweighted Least Squares
,”
The American Statistician
,
42
(
2
), p.
152
.
31.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measurement Techniques for Transonic and Supersonic Flow in Cascades and Turbomachines, Vol. MTT0885-A102
,
Geneva, Italy
,
Oct. 24–25
.
32.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
33.
Tempelmann
,
D.
,
2011
, “
Receptivity of Crossflow-Dominated Boundary Layers
,”
Dissertation
,
KTH Royal Institute of Technology
,
Stockholm Sweden
.
34.
White
,
F. M.
,
2007
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
Boston, MA
.
You do not currently have access to this content.