Abstract

Pumped-thermal energy storage (PTES) systems consume and produce electrical energy using thermal storage media as an intermediate stage. PTES lends itself to long-duration energy storage to facilitate high penetration of intermittent electricity generation. This study presents a model-based comparison of two thermal storage types within a PTES system: a conventional, single-phase, stratified water-glycol sensible storage system (SGS), and an ideal isothermal, two-phase heat exchanger that freezes a water reservoir (isothermal heat exchanger (IHEX)). The SGS thermal storage capacity is based on the liquid’s sensible heat change with temperature, whereas the capacity of the IHEX is based on the latent heat of isothermally freezing and melting water. The idealized IHEX modeled here undergoes steady-state melting and freezing (in contrast to transient rates, as observed with ice-on-coil storage). A computational model of a complete PTES system is presented and used to evaluate the PTES system-level performance with each type of cold storage. Compared to SGS-based PTES, under nominal operating conditions, the IHEX-based PTES increased electrical round-trip efficiency from 61% to 82% and increased energy density from 1.13 to 8.09 kWh/m3 The performance of the PTES configured with IHEX storage was also analyzed under varying operating parameters.

References

1.
Ipakchi
,
A.
, and
Albuyeh
,
F.
,
2009
, “
Grid of the Future
,”
IEEE Power Energy Mag.
,
7
(
2
), pp.
52
62
.
2.
Albadi
,
M. H.
, and
El-Saadany
,
E. F.
,
2010
, “
Overview of Wind Power Intermittency Impacts on Power Systems
,”
Electr. Power Syst. Res.
,
80
(
6
), pp.
627
632
.
3.
Matos
,
C. R.
,
Carneiro
,
J. F.
, and
Silva
,
P. P.
,
2019
, “
Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification
,”
J. Energy Storage
,
21
, pp.
241
258
.
4.
May
,
G. J.
,
Davidson
,
A.
, and
Monahov
,
B.
,
2018
, “
Lead Batteries for Utility Energy Storage: A Review
,”
J. Energy Storage
,
15
, pp.
145
157
.
5.
Rouse
,
J. P.
,
Garvey
,
S. D.
,
Cárdenas
,
B.
, and
Davenne
,
T. R.
,
2018
, “
A Series Hybrid “Real Inertia” Energy Storage System
,”
J. Energy Storage
,
20
, pp.
1
15
.
6.
Center for Sustainable Systems, University of Michigan
,
2020
, “
U.S. Grid Energy Storage Factsheet
,”
Pub. No. CSS15-17, Accessed February 7, 2021
.
7.
Benato
,
A.
, and
Stoppato
,
A.
,
2018
, “
Pumped Thermal Electricity Storage: A Technology Overview
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
301
315
.
8.
Laughlin
,
R. B.
,
2017
, “
Pumped Thermal Grid Storage With Heat Exchange
,”
J. Renewable Sustainable Energy
,
9
(
4
), pp.
044103
.
9.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
.
10.
Farres-Antunez
,
P.
,
Xue
,
H.
, and
White
,
A. J.
,
2018
, “
Thermodynamic Analysis and Optimisation of a Combined Liquid Air and Pumped Thermal Energy Storage Cycle
,”
J. Energy Storage
,
18
, pp.
90
102
.
11.
Dumont
,
O.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Design, Modeling and Experimentation of a Reversible HP-ORC Prototype
,”
Proceedings of the Turbine Technical Conference and Exposition, ASME TURBO EXPO
,
Dusseldorf, Germany
,
June 16–20
.
12.
Dumont
,
O.
,
2017
, “
Investigation of a Heat Pump Reversible Into an Organic Rankine Cycle and Its Application in the Building Sector
,” p.
236
. doi:10.13140/RG.2.2.19499.13604
13.
Peterson
,
R. B.
,
2011
, “
A Concept for Storing Utility-Scale Electrical Energy in the Form of Latent Heat
,”
Energy
,
36
(
10
), pp.
6098
6109
.
14.
Robinson
,
A.
,
2017
, “
Ultra-High Temperature Thermal Energy Storage. Part 1: Concepts
,”
J. Energy Storage
,
13
, pp.
277
286
.
15.
Robinson
,
A.
,
2018
, “
Ultra-High Temperature Thermal Energy Storage. Part 2: Engineering and Operation
,”
J. Energy Storage
,
18
, pp.
333
339
.
16.
Davenne
,
T. R.
,
Garvey
,
S. D.
,
Cardenas
,
B.
, and
Simpson
,
M. C.
,
2017
, “
The Cold Store for a Pumped Thermal Energy Storage System
,”
J. Energy Storage
,
14 (Part 2)
, pp.
295
310
.
17.
White
,
A.
,
Parks
,
G.
, and
Markides
,
C. N.
,
2013
, “
Thermodynamic Analysis of Pumped Thermal Electricity Storage
,”
Appl. Therm. Eng.
,
53
(
2
), pp.
291
298
.
18.
Iliff
,
G.
,
Atoyan
,
L.
, and
Ishmael
,
M.
,
2019
, “
High Efficiency Heat Exchanger For Ice
,”
Cooling Technology Institute Annual Conference
,
New Orleans, LA
,
Feb. 10–14
.
19.
Oró
,
E.
,
Codina
,
M.
, and
Salom
,
J.
,
2016
, “
Energy Model Optimization for Thermal Energy Storage System Integration in Data Centres
,”
J. Energy Storage
,
8
, pp.
129
141
.
20.
Stijepovic
,
M. Z.
, and
Linke
,
P.
,
2011
, “
Optimal Waste Heat Recovery and Reuse in Industrial Zones
,”
Energy
,
36
(
7
), pp.
4019
4031
.
21.
MATLAB
,
2010
, “MATLAB Version 9.4 (R2018a),”
The MathWorks Inc.
,
Natick, MA
.
22.
Bell
,
I.
,
2013
, “
CoolProp: An Open-Source Thermophysical Property Library
,” http://coolprop.sf.net,
Accessed June 2018
.
23.
Frate
,
G. F.
,
Antonelli
,
M.
, and
Desideri
,
U.
,
2017
, “
A Novel Pumped Thermal Electricity Storage (PTES) System With Thermal Integration
,”
Appl. Therm. Eng.
,
121
, pp.
1051
1058
.
24.
Ghahramani Zarajabad
,
O.
, and
Ahmadi
,
R.
,
2018
, “
Numerical Investigation of Different PCM Volume on Cold Thermal Energy Storage System
,”
J. Energy Storage
,
17
, pp.
515
524
.
You do not currently have access to this content.