Abstract

A design configuration and selection of working fluid for solar absorption remain critical for high performance of energy harvesting process in solar pond. In this study, heating and pressure loss characteristics in a novel designed spiral-coil geometry pertinent to salt-gradient solar pond (SGSP) is examined and the thermal performance of nanofluids in the coil is assessed. Nanofluids possessing graphene, functionalized graphene nanoplatelet (fGnP), and graphene oxide (GO) at 0.06% volume concentration are considered as the working fluids in the system. In order to achieve a novel design of a spiral coil, the circular cross-sectional geometries with aspect ratios (AR) of 0.5, 1, and 2 are incorporated in the analysis. The selection of the aspect ratios of 0.5, 1, and 2 results in elliptic, circular, and oval cross sections of the coil, respectively. The findings reveal that heat transfer enhances and pressure loss reduces via increasing the mass flowrate. This is due to the formation of a stable secondary flow which causes mixing enhancement while shortening the thermal entry length. Circular and elliptic cross sections resulted in the maximum and the smallest normalized average Nusselt numbers, respectively, for low rates of flow. This is because of thermal resistance created under the large surface area-to-volume ratio; however, this effect varnishes for high mass flowrates. Graphene oxide and functionalized graphene nanoplatelet have the highest and the lowest normalized average pressure drops, respectively, for all flow rates.

References

1.
Khodabandeh
,
E.
,
Safaei
,
M. R.
,
Akbari
,
S.
,
Akbari
,
O. A.
, and
Alrashed
,
A. A. A. A.
,
2018
, “
Application of Nanofluid to Improve the Thermal Performance of Horizontal Spiral Coil Utilized in Solar Ponds: Geometric Study
,”
Renewable Energy
,
122
, pp.
1
16
. 10.1016/j.renene.2018.01.023
2.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
. 10.1115/1.4026915
3.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041201
. 10.1115/1.4007194
4.
Alagao
,
F. B.
,
Akbarzadeh
,
A.
, and
Johnson
,
P. W.
,
1994
, “
The Design, Construction, and Initial Operation of a Closed-Cycle, Salt-Gradient Solar Pond
,”
Sol. Energy
,
53
(
4
), pp.
343
351
. 10.1016/0038-092X(94)90037-X
5.
Akbari
,
O. A.
,
Afrouzi
,
H. H.
,
Marzban
,
A.
,
Toghraie
,
D.
,
Malekzade
,
H.
, and
Arabpour
,
A.
,
2017
, “
Investigation of Volume Fraction of Nanoparticles Effect and Aspect Ratio of the Twisted Tape in the Tube
,”
J. Therm. Anal. Calorim.
,
129
(
3
), pp.
1911
1922
. 10.1007/s10973-017-6372-7
6.
Palo
,
L.
, and
Alto
,
P.
,
1979
, “
The Steady State Salt Gradient Solar Pondt
,”
Sol. Energy
,
23
(
1
), pp.
37
45
.
7.
Dehghan
,
A. A.
,
Movahedi
,
A.
, and
Mazidi
,
M.
,
2013
, “
ScienceDirect Experimental Investigation of Energy and Exergy Performance of Square and Circular Solar Ponds
,”
Sol. Energy
,
97
, pp.
273
284
. 10.1016/j.solener.2013.08.013
8.
Jamal-Abad
,
M. T.
,
Zamzamian
,
A.
, and
Dehghan
,
M.
,
2013
, “
Experimental Studies on the Heat Transfer and Pressure Drop Characteristics of Cu-Water and Al-Water Nanofluids in a Spiral Coil
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
206
212
.10.1016/j.expthermflusci.2013.02.001
9.
Sasmito
,
A. P.
,
Kurnia
,
J. C.
,
Wang
,
W.
,
Jangam
,
S. V.
, and
Mujumdar
,
A. S.
,
2012
, “
Numerical Analysis of Laminar Heat Transfer Performance of In-Plane Spiral Ducts With Various Cross-Sections at Fixed Cross-Section Area
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5882
5890
. 10.1016/j.ijheatmasstransfer.2012.05.085
10.
Mehrizi
,
A. A.
,
Farhadi
,
M.
,
Afroozi
,
H. H.
,
Sedighi
,
K.
, and
Darz
,
A. A. R.
,
2012
, “
Mixed Convection Heat Transfer in a Ventilated Cavity With Hot Obstacle: Effect of Nanofluid and Outlet Port Location
,”
Int. Commun. Heat Mass Transfer
,
39
(
7
), pp.
1000
1008
. 10.1016/j.icheatmasstransfer.2012.04.002
11.
Sakhrieh
,
A.
, and
Al-Salaymeh
,
A.
,
2013
, “
Experimental and Numerical Investigations of Salt Gradient Solar Pond Under Jordanian Climate Conditions
,”
Energy Convers. Manage.
,
65
, pp.
725
728
. 10.1016/j.enconman.2012.01.046
12.
Hemmat Esfe
,
M.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Heat Transfer Characteristics and Pressure Drop of COOH-Functionalized DWCNTs/Water Nanofluid in Turbulent Flow at Low Concentrations
,”
Int. J. Heat Mass Transfer
,
73
, pp.
186
194
. 10.1016/j.ijheatmasstransfer.2014.01.069
13.
Khodabandeh
,
E.
,
bahrami
,
L.
,
Pourfayaz
,
F.
,
Khodabandeh
,
E.
, and
Yan
,
W.-M.
,
2017
, “
Experimental Studies on the Applications of PCMs and Nano-PCMs in Buildings: A Critical Review
,”
Energy Build.
,
154
, pp.
96
112
. 10.1016/j.enbuild.2017.08.037
14.
Mahyari
,
A. A.
,
Karimipour
,
A.
, and
Afrand
,
M.
,
2019
, “
Effects of Dispersed Added Graphene Oxide-Silicon Carbide Nanoparticles to Present a Statistical Formulation for the Mixture Thermal Properties
,”
Phys. A
,
521
, pp.
98
112
. 10.1016/j.physa.2019.01.035
15.
Arshad
,
A.
,
Jabbal
,
M.
,
Yan
,
Y.
, and
Reay
,
D.
,
2019
, “
A Review on Graphene Based Nanofluids: Preparation, Characterization and Applications
,
J. Mol. Liq.
,
279
, pp.
444
484
. 10.1016/j.molliq.2019.01.153
16.
Zeynali
,
A.
,
Akbari
,
A.
, and
Khalilian
,
M.
,
2019
, “
Investigation of the Performance of Modified Organic Rankine Cycles (ORCs) and Modified Trilateral Flash Cycles (TFCs) Assisted by a Solar Pond
,”
Sol. Energy
,
182
, pp.
361
381
. 10.1016/j.solener.2019.03.001
17.
Boudhiaf
,
R.
,
Ben Moussa
,
A.
, and
Baccar
,
M.
,
2012
, “
A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond
,”
Energies
,
5
(
10
), pp.
3786
4007
. 10.3390/en5103986
18.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2017
, “
Application of a Novel Biological Nanofluid in a Liquid Block Heat Sink for Cooling of an Electronic Processor: Thermal Performance and Irreversibility Considerations
,”
Energy Convers. Manage.
,
149
, pp.
155
167
. 10.1016/j.enconman.2017.07.020
19.
Behnampour
,
A.
,
Akbari
,
O. A.
,
Safaei
,
M. R.
,
Ghavami
,
M.
,
Marzban
,
A.
,
Sheikh Shabani
,
G. A.
,
zarringhalam
,
M.
, and
Mashayekhi
,
R.
,
2017
, “
Analysis of Heat Transfer and Nanofluid Fluid Flow in Microchannels With Trapezoidal, Rectangular and Triangular Shaped Ribs
,”
Phys. E
,
91
, pp.
15
31
. 10.1016/j.physe.2017.04.006
20.
Ke
,
Y.
,
Pei-Qi
,
G.
,
Yan-Cai
,
S.
, and
Hai-Tao
,
M.
,
2011
, “
Numerical Simulation on Heat Transfer Characteristic of Conical Spiral Tube Bundle
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
284
292
. 10.1016/j.applthermaleng.2010.09.008
21.
Doshmanziari
,
F. I.
,
Kadivar
,
M. R.
,
Yaghoubi
,
M.
,
Jalali-Vahid
,
D.
, and
Arvinfar
,
M. A.
,
2017
, “
Experimental and Numerical Study of Turbulent Fluid Flow and Heat Transfer of Al2O3/Water Nanofluid in a Spiral-Coil Tube
,”
Heat Transf. Eng.
,
38
(
6
), pp.
611
626
. 10.1080/01457632.2016.1200380
You do not currently have access to this content.