Abstract

In this work, a novel design optimization technique based on active learning, which involves dynamic exploration and exploitation of the design space of interest using an ensemble of machine learning algorithms, is presented. In this approach, a hybrid methodology incorporating an explorative weak learner (regularized basis function model) that fits high-level information about the response surface and an exploitative strong learner (based on committee machine) that fits finer details around promising regions identified by the weak learner is employed. For each design iteration, an aristocratic approach is used to select a set of nominees, where points that meet a threshold merit value as predicted by the weak learner are selected for evaluation. In addition to these points, the global optimum as predicted by the strong learner is also evaluated to enable rapid convergence to the actual global optimum once the most promising region has been identified by the optimizer. This methodology is first tested by applying it to the optimization of a two-dimensional multi-modal surface and, subsequently, to a complex internal combustion (IC) engine combustion optimization case with nine control parameters related to fuel injection, initial thermodynamic conditions, and in-cylinder flow. It is found that the new approach significantly lowers the number of function evaluations that are needed to reach the optimum design configuration (by up to 80%) when compared to conventional optimization techniques, such as particle swarm and genetic algorithm-based optimization techniques.

References

References
1.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
. 10.4271/2017-01-0578.
2.
Probst
,
D. M.
,
Senecal
,
P. K.
,
Qian
,
P. Z.
,
Xu
,
M. X.
, and
Leyde
,
B. P.
,
2016
, “
Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD
,”
Proceedings of ASME 2016 Internal Combustion Engine Division Fall Technical Conference
,
Oct. 9–12
,
American Society of Mechanical Engineers
,
New York
, pp.
V001T006A009
V001T006A009
.
3.
Pei
,
Y.
,
Pal
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
,
Futterer
,
C.
,
Brenner
,
M.
,
Probst
,
D.
, and
Som
,
S.
,
2019
, “
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer
,”
No. 0148-7191, SAE Technical Paper
.
4.
Ashok
,
B.
,
Jeevanantham
,
A. K.
,
Prabu
,
K.
,
Shirude
,
P. M.
,
Shinde
,
D. D.
,
Nadgauda
,
N. S.
, and
Karthick
,
C.
,
2021
, “
Multi-objective Optimization on Vibration and Noise Characteristics of Light Duty Biofuel Powered Engine at Idling Condition Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042301
. 10.1115/1.4047974
5.
Marri
,
V. B.
,
Madhu Murthy
,
K.
, and
Amba Prasad Rao
,
G.
,
2020
, “
Optimization of Operating Parameters of an Off-Road Automotive Diesel Engine Running at Highway Drive Conditions Using Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
, accepted manuscript.
6.
Zhang
,
Q.
,
Ogren
,
R. M.
, and
Kong
,
S.-C.
,
2016
, “
A Comparative Study of Biodiesel Engine Performance Optimization Using Enhanced Hybrid PSO–GA and Basic GA
,”
Appl. Energy
,
165
, pp.
676
684
. 10.1016/j.apenergy.2015.12.044
7.
Broatch
,
A.
,
Novella
,
R.
,
Gomez-Soriano
,
J.
,
Pal
,
P.
, and
Som
,
S.
,
2018
, “
Numerical Methodology for Optimization of Compression-Ignited Engines Considering Combustion Noise Control
,”
SAE Int. J. Engines
,
11
(
6
), pp.
625
642
. 10.4271/2018-01-0193
8.
Hanson
,
R.
,
Curran
,
S.
,
Wagner
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2012
, “
Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-cylinder Engine
,”
SAE Int. J. Engines
,
5
(
2
), pp.
286
299
. 10.4271/2012-01-0380
9.
Wickman
,
D. D.
,
Senecal
,
P. K.
, and
Reitz
,
R. D.
,
2001
, “
Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-dimensional Spray and Combustion Modeling
,”
SAE Transactions
, pp.
487
507
10.
Bertram
,
A. M.
,
Zhang
,
Q.
, and
Kong
,
S.-C.
,
2016
, “
A Novel Particle Swarm and Genetic Algorithm Hybrid Method for Diesel Engine Performance Optimization
,”
Int. J. Engine Res.
,
17
(
7
), pp.
732
747
. 10.1177/1468087415611031
11.
Shi
,
Y.
, and
Reitz
,
R. D.
,
2010
, “
Optimization of a Heavy-Duty Compression–Ignition Engine Fueled With Diesel and Gasoline-Like Fuels
,”
Fuel
,
89
(
11
), pp.
3416
3430
. 10.1016/j.fuel.2010.02.023
12.
Wu
,
Z.
,
Rutland
,
C. J.
, and
Han
,
Z.
,
2018
, “
Numerical Optimization of Natural Gas and Diesel Dual-Fuel Combustion for a Heavy-Duty Engine Operated at a Medium Load
,”
Int. J. Engine Res.
,
19
(
6
), pp.
682
696
. 10.1177/1468087417729255
13.
Lu
,
Y.
,
Li
,
J.
,
Xiong
,
L.
, and
Li
,
B.
,
2020
, “
Simulation and Experimental Study of a Diesel Engine Based on an Electro-hydraulic FVVA System Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032204
. 10.1115/1.4044561
14.
Hamel
,
J. M.
,
Allphin
,
D.
, and
Elroy
,
J.
,
2018
, “
Multi-objective Optimization Model Development to Support Sizing Decisions for a Novel Reciprocating Steam Engine Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072204
. 10.1115/1.4039611
15.
Moiz
,
A. A.
,
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Som
,
S.
, and
Kodavasal
,
J.
,
2018
, “
A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing
,”
SAE Int. J. Commer. Veh.
,
11
(
5
), pp.
291
306
. 10.4271/2018-01-0190
16.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Exploring the Potential of Machine Learning in Reducing the Computational Time/Expense and Improving the Reliability of Engine Optimization Studies
,”
Int. J. Engine Res.
,
21
(
7
), p.
1468087418808949
. 10.1177/1468087418808949
17.
Probst
,
D. M.
,
Raju
,
M.
,
Senecal
,
P. K.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Som
,
S.
,
Moiz
,
A. A.
, and
Pei
,
Y.
,
2019
, “
Evaluating Optimization Strategies for Engine Simulations Using Machine Learning Emulators
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091011
. 10.1115/1.4043964
18.
Badra
,
J.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Brenner
,
M.
, and
Farooq
,
A.
,
2019
, “
Engine Combustion System Optimization Using CFD and Machine Learning: A Methodological Approach
,”
Proceedings of ASME 2019 Internal Combustion Engine Division Fall Technical Conference
,
Chicago, IL
,
Oct. 20–23
,
American Society of Mechanical Engineers Digital Collection
.
19.
Badra
,
J.
,
Sim
,
J.
,
Pei
,
Y.
,
Viollet
,
Y.
,
Pal
,
P.
,
Futterer
,
C.
,
Brenner
,
M.
,
Som
,
S.
,
Farooq
,
A.
, and
Chang
,
J.
,
2020
, “
Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning
,”
SAE Technical Paper No. 0148-7191
.
20.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Brenner
,
M.
, and
Farooq
,
A.
,
2021
, “
Engine Combustion System Optimization Using CFD and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
. 10.1115/1.4047978
21.
Vaughan
,
A.
, and
Bohac
,
S. V.
, 2013, “
A Cycle-to-Cycle Method to Predict HCCI Combustion Phasing
,”
Proceedings of ASME 2013 Internal Combustion Engine Division Fall Technical Conference
,
Oct. 13–16
,
American Society of Mechanical Engineers
, p.
V001T003A026
.
22.
Validi
,
A.
,
Chen
,
J.-Y.
, and
Ghafourian
,
A.
,
2012
, “
HCCI Intelligent Rapid Modeling by Artificial Neural Network and Genetic Algorithm
,”
J. Comb.
,
2012
, pp.
1
11
. 10.1155/2012/854393
23.
Vaughan
,
A.
, and
Bohac
,
S. V.
,
2013
, “
An Extreme Learning Machine Approach to Predicting Near Chaotic HCCI Combustion Phasing in Real-Time
,”
arXiv preprint arXiv:1310.3567
.
24.
Samadani
,
E.
,
Shamekhi
,
A. H.
,
Behroozi
,
M. H.
, and
Chini
,
R.
,
2009
, “
A Method for Pre-calibration of DI Diesel Engine Emissions and Performance Using Neural Network and Multi-objective Genetic Algorithm
,”
Iran. J. Chem. Chem. Eng.
,
28
(
4
), pp.
61
70
.
25.
He
,
Y.
, and
Rutland
,
C. J.
,
2003
, “
Neural Cylinder Model and Its Transient Results
,”
SAE Technical Paper No. 0148-7191
. 10.1016/j.apenergy.2014.10.088
26.
He
,
Y.
, and
Rutland
,
C. J.
,
2002
, “
Modeling of a Turbocharged Di Diesel Engine Using Artificial Neural Networks
,”
SAE Transactions
, pp.
1532
1543
, Paper No. 2002-01-2772.
27.
Rezaei
,
J.
,
Shahbakhti
,
M.
,
Bahri
,
B.
, and
Aziz
,
A. A.
,
2015
, “
Performance Prediction of HCCI Engines With Oxygenated Fuels Using Artificial Neural Networks
,”
Appl. Energy
,
138
, pp.
460
473
. 10.1016/j.apenergy.2014.10.088
28.
Brahma
,
I.
,
Rutland
,
C. J.
,
Foster
,
D. E.
, and
He
,
Y.
,
2005
, “
A New Approach to System Level Soot Modeling
,”
SAE Technical Paper No. 0148-7191
.
29.
Van der Laan
,
M. J.
,
Polley
,
E. C.
, and
Hubbard
,
A. E.
,
2007
, “
Super Learner
,”
Stat. Appl. Genet. Mol. Biol.
,
6
(
1
). 10.2202/1544-6115.1309
30.
Bergmeir
,
C. N.
,
Molina Cabrera
,
D.
, and
Benítez Sánchez
,
J. M.
Memetic Algorithms With Local Search Chains in R: The Rmalschains Package
,”
American Statistical Association
.
31.
Joly
,
M.
,
Sarkar
,
S.
, and
Mehta
,
D.
,
2019
, “
Machine Learning Enabled Adaptive Optimization of a Transonic Compressor Rotor With Precompression
,”
ASME J. Turbomach.
,
141
(
5
), p.
051011
. 10.1115/1.4041808
32.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Glob. Optim.
,
21
(
4
), pp.
345
383
. 10.1023/A:1012771025575
33.
Holmström
,
K.
,
Quttineh
,
N.-H.
, and
Edvall
,
M. M.
,
2008
, “
An Adaptive Radial Basis Algorithm (ARBF) for Expensive Black-Box Mixed-Integer Constrained Global Optimization
,”
Optim. Eng.
,
9
(
4
), pp.
311
339
. 10.1007/s11081-008-9037-3
34.
Wang
,
C.
,
Duan
,
Q.
,
Gong
,
W.
,
Ye
,
A.
,
Di
,
Z.
, and
Miao
,
C.
,
2014
, “
An Evaluation of Adaptive Surrogate Modeling Based Optimization With Two Benchmark Problems
,”
Environ. Model. Softw.
,
60
, pp.
167
179
. 10.1016/j.envsoft.2014.05.026
35.
Müller
,
J.
,
2016
, “
MISO: Mixed-Integer Surrogate Optimization Framework
,”
Optim. Eng.
,
17
(
1
), pp.
177
203
. 10.1007/s11081-015-9281-2
36.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
, and
Dubourg
,
V.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
. 10.3389/fninf.2014.00014
37.
Girija
,
S. S.
,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” arXiv preprint arXiv:1603.04467
38.
Senecal
,
P. K.
,
2000
,
Numerical Optimization Using the GEN4 Micro-Genetic Algorithm Code
,
University of Wisconsin-Madison
,
Madison, WI
.
39.
Krishnakumar
,
K.
,
1989
, “
Micro-genetic Algorithms for Stationary and Non-stationary Function Optimization
,”
Proceedings of Intelligent Control and Adaptive Systems
,
Philadelphia, PA
,
Nov. 1–3
,
International Society for Optics and Photonics
, pp.
289
297
.
40.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, Australia
,
Nov. 27–Dec. 1
, pp.
1942
1948
.
41.
Clerc
,
M.
,
2012
, “Beyond Standard Particle Swarm Optimisation,”
Innovations and Developments of Swarm Intelligence Applications
,
IGI Global
, pp.
1
19
.
You do not currently have access to this content.