Abstract

Conventional desalination technologies like multi stage flashing, multi-effect desalination (MED) using steam as motive fluid can be made sustainable by obtaining the motive steam from solar thermal systems. In this study, a transient simulation has been performed to determine the dissimilitude in pressure drop and dryness fraction, of working fluid in absorber tube due to variation in solar irradiance. A one-dimensional (1D) mathematical model has been developed using matlab for assessing the thermal performance and heat transfer characteristics of a direct steam generating (DSG) parabolic trough collector (PTC) system. It was observed that maximum pressure drop does not occur at maximum quality indicating the working conditions impair the system performance. The developed model was used to overcome this by varying both pressure and mass flowrate of working fluid in accordance to the radiation, results indicated reduction in pressure drop during the same time period for the same exit quality.

References

References
1.
Thu
,
K.
,
2010
, “
Adsorption Desalination Theory and Experiments
,”
Ph.D. thesis
,
National University of Singapore
,
Singapore
.
2.
Central Ground Water Board
,
2016
, “
Overview of Ground Water in India
.”
3.
El-Dessouky
,
H.
, and
Ettouney
,
H.
,
2002
,
Fundamentals of Sea Water Desalination
,
Elsevier
,
The Netherlands
.
4.
U.S. Department of the Interior, Water and Environmental Services Division
,
2008
, “Barriers to Thermal Desalination in the United States,” Desalination and Water Purification Research and Development Program Report No. 144.
5.
Youssef
,
P. G.
,
AL-Dadaha
,
R. K.
, and
Mahmoud
,
S. M.
,
2014
, “
Comparative Analysis of Desalination Technologies
,”
Energy Procedia
,
61
, pp.
2604
2607
. 10.1016/j.egypro.2014.12.258
6.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energ. Resour. Technol.
,
136
(
3
), p.
031202
. 10.1115/1.4026915
7.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2014
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energ. Resour. Technol.
,
137
(
1
), p.
011201
. 10.1115/1.4027764
8.
Abu-Arabi
,
M.
,
Zurigat
,
Y.
,
Al-Hinaib
,
H.
, and
Al-Hiddabib
,
S.
,
2002
, “
Modelling and Performance Analysis of a Solar Desalination Unit With Double-Glass Cover Cooling
,”
Desalination
,
143
(
2
), pp.
173
182
. 10.1016/S0011-9164(02)00238-2
9.
Voropoulos
,
K.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2003
, “
Experimental Investigation of the Behaviour of a Solar Still Coupled With Hot Water Storage Tank
,”
Desalination
,
156
(
3
), pp.
15
322
. 10.1016/s0011-9164(03)00362-x
10.
Chachin Vishal
,
C. V.
,
Venkatesan
,
G.
,
Prakash Kumar
,
L. S. S.
,
Chandrakanth
,
B.
,
Karthikeyan
,
A.
, and
Jalihal
,
P.
,
2019
, “
Impact of Thermosiphon on Nocturnal Yield of Conventional Solar Still
,”
Int. J. Amb. Energy
, pp.
1
7
. 10.1080/01430750.2019.1587719
11.
Badran
,
O. O.
, and
Al-Tahaineh
,
H. A.
,
2005
, “
The Effect of Coupling a Flat-Plate Collector on the Solar Still Productivity
,”
Desalination
,
183
(
1–3
), pp.
137
142
. 10.1016/j.desal.2005.02.046
12.
Derakhshan
,
S.
, and
Khosravian
,
M.
,
2019
, “
Exergy Optimization of a Novel Combination of a Liquid Air Energy Storage System and a Parabolic Trough Solar Collector Power Plant
,”
ASME J. Energ. Resour. Technol.
,
141
(
8
), p.
081901
. 10.1115/1.4042415
13.
Gong
,
G.
,
Huang
,
X.
,
Wang
,
J.
, and
Hao
,
M.
,
2010
, “
An Optimized Model and Test of the China’s First High Temperature Parabolic Trough Solar Receiver
,”
Sol. Energy
,
84
(
12
), pp.
2230
2245
. 10.1016/j.solener.2010.08.003
14.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energ. Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
15.
Hussain
,
M. I.
,
Mokheimer
,
E. M. A.
, and
Ahmed
,
S.
,
2017
, “
Optimal Design of a Solar Collector for Required Flux Distribution on a Tubular Receiver
,”
ASME J. Energ. Resour. Technol.
,
139
(
1
), p.
120061
. 10.1115/1.4035361
16.
Padilla
,
R. V.
,
Demirkaya
,
G.
,
Goswami D.
,
Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2011
, “
Heat Transfer Analysis of Parabolic Trough Solar Receiver
,”
App. Energy
,
88
(
12
), pp.
5097
5110
. 10.1016/j.apenergy.2011.07.012
17.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2005
,
Solar Engineering of Thermal Processes
, 3rd ed.,
John Wiley & Sons
,
New York
.
18.
Yılmaz
,
I. H.
, and
Söylemez
,
M. S.
,
2014
, “
Thermo-Mathematical Modelling of Parabolic Trough Collector
,”
Energ. Conv. Manag.
,
88
, pp.
768
784
. 10.1016/j.enconman.2014.09.031
19.
Spisz
,
E. W.
,
Weigund
,
A. J.
,
Bowmun
,
R. L.
, and
Juck
,
J. R.
,
1969
, “
Solar Absorptance and Spectral Reflectances of 12 Metals for Temperatures Ranging From 300 to 500K
,” NASA TN D-5353.
20.
Cheng
,
Z. D.
,
He
,
Y.-L.
, and
Qiu
,
Y.
,
2015
, “
A Detailed Non Uniform Thermal Model of a Parabolic Trough Solar Receiver With Two Halves and Two Inactive Ends
,”
Renew. Energy
,
74
, pp.
139
147
. 10.1016/j.renene.2014.07.060
21.
Wu
,
Z.
,
Li
,
S.
,
Yuan
,
G.
,
Lei
,
D.
, and
Wang
,
Z.
,
2014
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics of Parabolic Trough Receiver
,”
App. Energy
,
113
(
7
), pp.
902
911
. 10.1016/j.apenergy.2013.07.050
22.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Xiao
,
J.
,
Tao
,
Y. B.
, and
Xu
,
R. J.
,
2010
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics in the Receiver Tube of Parabolic Trough Solar Collector
,”
Int. Comm. Heat Mass Tran.
,
37
(
7
), pp.
782
787
. 10.1016/j.icheatmasstransfer.2010.05.002
23.
Liu
,
Q.
,
Yang
,
M.
,
Lei
,
J.
,
Jin
,
H.
,
Gao
,
Z.
, and
Wang
,
Y.
,
2012
, “
Modelling and Optimizing Parabolic Trough Solar Collector Systems Using the Least Squares Support Vector Machine Method
,”
Sol. Energy
,
86
(
7
), pp.
1973
1980
. 10.1016/j.solener.2012.01.026
24.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
. 10.1016/j.applthermaleng.2014.03.053
25.
Kumaresan
,
G.
,
Sridhar
,
R.
, and
Velraj
,
R.
,
2012
, “
Performance Studies of a Solar Parabolic Trough Collector With a Thermal Energy Storage System
,”
Energy
,
47
(
1
), pp.
395
402
. 10.1016/j.energy.2012.09.036
26.
Xu
,
L.
,
Wang
,
Z.
,
Li
,
X.
,
Yuan
,
G.
,
Sun
,
F.
,
Lei
,
D.
, and
Li
,
S.
,
2014
, “
A Comparison of Three Test Methods for Determining the Thermal Performance of Parabolic Trough Solar Collectors
,”
Sol. Energy
,
99
, pp.
11
27
. 10.1016/j.solener.2013.10.009
27.
Salgado Conrado
,
L.
,
Rodriguez-Pulido
,
A.
, and
Calderón
,
G.
,
2017
, “
Thermal Performance of Parabolic Trough Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
1345
1359
. 10.1016/j.rser.2016.09.071
28.
Zapata
,
J. I.
,
Pye
,
J.
, and
Lovegrove
,
K.
,
2013
, “
A Transient Model for the Heat Exchange in a Solar Thermal Once Through Cavity Receiver
,”
Sol. Energy
,
93
, pp.
280
293
. 10.1016/j.solener.2013.04.005
29.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behina
,
M.
,
1996
, “
Thermal Analysis of Parabolic Trough Solar Collector for Power Generation
,”
Proceedings of ANZSES 34th Annual Conferenc
,
Darwin, Australia
,
January
, pp.
460
467
.
30.
Odeh
,
S. D.
,
Morrison
,
G. L.
, and
Behina
,
M.
,
1998
, “
Modelling of Parabolic Through Direct Steam Generation Solar Collector
,”
Sol. Energy
,
62
(
6
), pp.
395
406
. 10.1016/S0038-092X(98)00031-0
31.
Reynolds
,
B. D. J.
, and
Morrison
,
G. L.
,
2002
, “
A Hydrodynamic Model
,”
Proceedings of ANZES Solar
,
Newcastle, Australia
,
January
, pp.
1
6
.
32.
YaXuan
,
X.
,
YuTing
,
W.
,
ChongFang
,
M. A.
,
Traore
,
M. K.
, and
YeQiang
,
Z.
,
2010
, “
Numerical Investigation of Thermal Performance of Heat Loss of Parabolic Trough Receiver
,”
Sci. China: Technol. Sci.
,
53
(
2
), pp.
444
452
. 10.1007/s11431-009-0279-x
33.
Hachicha
,
A. A.
,
Rodriguez
,
I.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2013
, “
Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector
,”
App. Energy
,
111
, pp.
581
592
. 10.1016/j.apenergy.2013.04.067
34.
Ratzel
,
A.
,
Hickox
,
C.
, and
Gartling
,
D.
,
1979
, “
Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries
,”
ASME J. Heat Transfer
,
101
(
1
), pp.
108
113
. 10.1115/1.3450899
35.
Stephen
,
K.
,
1992
,
Heat Transfer in Condensation and Boiling
,
Springer-Verlag
,
Berlin
.
36.
Raithby
,
G. D.
, and
Hollands
,
K.
,
1975
, “
A General Method of Obtaining Approximate Solution to Laminar and Turbulent Free Convection Problems
,”
Adv. Heat Tran.
,
11
, pp.
265
315
. 10.1016/S0065-2717(08)70076-5
37.
Fuqiang
,
W.
,
Jianyu
,
T.
,
Lanxin
,
M.
, and
Chengchao
,
W.
,
2015
, “
Effect of Glass Cover on Heat Flux Distribution on Tube Receiver With Parabolic Trough Collector System
,”
Energ. Conv. Manag.
,
90
, pp.
47
52
. 10.1016/j.enconman.2014.11.004
38.
Eck
,
M.
,
Uhlig
,
R.
,
Mertins
,
M.
,
Haberle
,
A.
, and
Lerchenmuller
,
H.
,
2007
, “
Thermal Load of Direct Steam Generating Absorber Tubes With Large Diameter in Horizontal Linear Fresnel Collectors
,”
Heat Tran. Eng.
,
28
(
1
), pp.
42
28
. 10.1080/01457630600985659
39.
Holman J. P.
,
1997
,
Heat Transfer
,
McGraw Hill Education
,
New Delhi
.
40.
Churchill
,
S.
, and
Chu
,
H.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
99
(
9
), pp.
1049
1053
. 10.1016/0017-9310(75)90222-7
41.
Churchill
,
S.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Cross Flow
,”
J. Heat Tran.
,
99
(
2
), pp.
300
306
. 10.1115/1.3450685
42.
Kakac
,
S.
, and
Liu
,
H.
,
1998
,
Heat Exchangers Selection Rating and Thermal Design
,
CRC Press
,
Boca Raton, FL
.
43.
Zhang
,
L.
,
Yu
,
Z.
,
Fan
,
L.
,
Wang
,
W.
,
Chen
,
H.
,
Hu
,
Y.
,
Fan
,
J.
,
Ni
,
M.
, and
Cen
,
K.
,
2013
, “
An Experimental Investigation of the Heat Losses of a U-Type Solar Heat Pipe Receiver of a Parabolic Trough Collector-Based Natural Circulation Steam Generation System
,”
Renew. Energ.
,
57
, pp.
262
268
. 10.1016/j.renene.2013.01.029
44.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(381
), pp.
339
348
. 10.1002/qj.49708938105
45.
Heidemann
,
W.
,
Spindler
,
K.
, and
Hahne
,
E.
,
1992
, “
Steady-State and Transient Temperature Field in the Absorber Tube of a Direct Steam Generating Solar Collector
,”
Int. J. Heat Mass Tranfer
,
35
(
3
), pp.
649
657
. 10.1016/0017-9310(92)90124-B
46.
Incorpera
,
F. P.
,
1990
,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
John Wiley & Sons
,
New York
.
47.
Fraidenraich
,
N.
,
Oliveira
,
C.
,
Vieira da Cunha
,
A. F
,
Gordon
,
J. M
, and
Vilela
,
O. C
,
2013
, “
Analytical Modelling of Direct Steam Generation of Solar Power Plants
,”
Sol. Energy
,
98
, pp.
511
522
. 10.1016/j.solener.2013.09.037
48.
Kandlikar
,
S. G.
,
1999
,
Handbook of Phase Change: Boiling and Condensation
,
CRC Press
,
Boca Raton, FL
.
49.
Mostafa Ghiaasiaan
,
S.
,
2017
,
Two-Phase Flow, Boiling and Condensation in Conventional and Miniature System
,
Cambridge University Press
,
Cambridge, UK
.
50.
Michaelides
,
E. E.
,
Crowe
,
C. T.
, and
Schwarzkopf
,
J. D.
,
2016
,
Multiphase Flow Handbook
, 2nd ed.,
Taylor & Francis Group
,
Boca Raton, FL
.
51.
Chen
,
J. C.
,
1996
, “
A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev
,
5
(
3
), pp.
322
329
. 10.1021/i260019a023
52.
Shah
,
M. M.
,
1984
, “
A Correlation for Heat Transfer During Subcooled Boiling on a Single Tube With Forced Crossflow
,”
Int. J. Heat Fluid flow
,
5
(
1
), pp.
13
20
. 10.1016/0142-727X(84)90005-5
53.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1987
, “
Simplified General Correlation for Saturated Flow Boiling and Comparisons with Data
,”
Chem. Eng. Res. Des.
,
65
, pp.
148
156
.
54.
Wolverine Tube Inc.
,
2006
, “
Chapter 13 Two Phase Pressure Drop
,” Engineering Data Book III.
55.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2014
,
Heat and Mass Transfer—Fundamentals and Applications
,
McGraw Hill Education (India) Pvt Ltd.
,
New Delhi
.
56.
Varghese
,
S. M.
,
Abraham
,
R.
,
Hariprasad
,
E.
, and
Sureshkumar
,
C.
,
2012
, “
Design and Performance Analysis of Solar Assisted Multi Effect Desalination System for Coastal Regions
,”
Indian Desalination Conference
,
Mumbai, India
,
Feb.
, pp.
1
12
.
57.
Samson Packiaraj Raphael
,
V.
,
Velraj
,
R.
, and
Jalihal
,
P.
,
2018
, “
Transient Analysis of Steam Accumulator Integrated With Solar Based MED-TVC System
,”
Desalination
,
435
, pp.
3
22
. 10.1016/j.desal.2017.12.045
You do not currently have access to this content.