Abstract

Thanks to its features such as being harmless to the environment, not creating noise pollution, and reducing oil dependence, many countries have started promoting the use of fuel cell vehicles (FCVs) and making plans on enhancing their hydrogen infrastructure. One of the main challenges with the FCVs is the selection of an effective hydrogen storage unit. Compressed gas tanks are mostly used as the hydrogen storage in the FCVs produced to date. However, the high amount of energy spent on the compression process and the manufacturing cost of high-safety composite tanks are the main problems to be overcome. Among different storage alternatives, boron compounds, which can be easily hydrolyzed at ambient temperature and pressure to produce hydrogen, are promising hydrogen storage materials. In this study, a 700-bar compressed gas tank and a sodium borohydride (NaBH4)-based hydrogen storage system are compared for a passenger fuel cell vehicle in terms of the range of the vehicle. The energy storage and production system of the FCV were modeled in matlabsimulink® environment coupling the modeling equations of each component after finding the power requirement of the vehicle through vehicle dynamics. Then, the simulations were performed using the speed profile of the New European Drive Cycle (NEDC) and the acceleration requirements. According to the simulation results, the NaBH4-based hydrogen storage system provided a 4.42% more range than the compressed gas tank.

References

1.
Manoharan
,
Y.
,
Hosseini
,
S. E.
,
Butler
,
B.
,
Alzhahrani
,
H.
,
Thi
,
B.
,
Senior
,
F.
,
Ashuri
,
T.
, and
Krohn
,
J.
,
2019
, “
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
,”
Appl. Sci.
,
9
(
11
), p.
2296
.
2.
Olabi
,
A. G.
,
Wilberforce
,
T.
, and
Abdelkareem
,
M. A.
,
2021
, “
Fuel Cell Application in the Automotive Industry and Future Perspective
,”
Energy
,
214
(
1
), p.
118955
.
3.
Baskar
,
S.
,
Vijayan
,
V.
,
Isaac Premkumar
,
I. J.
,
Arunkumar
,
D.
, and
Thamaran
,
D.
,
2020
, “
Design and Material Characteristics of Hybrid Electric Vehicle
,”
Mater. Today: Proc.
,
37
(
2
), pp.
351
353
.
4.
Dinc
,
A.
, and
Otkur
,
M.
,
2020
, “
Optimization of Electric Vehicle Battery Size and Reduction Ratio Using Genetic Algorithm
,”
ICMAE 2020—2020 11th International Conference on Mechanical and Aerospace Engineering
,
Greece
,
July 14–17
, pp.
281
285
.
5.
Trencher
,
G.
,
2020
, “
Strategies to Accelerate the Production and Diffusion of Fuel Cell Electric Vehicles: Experiences From California
,”
Energy Reports
,
6
(
1
), pp.
2503
2519
.
6.
Muthukumar
,
M.
,
Rengarajan
,
N.
,
Velliyangiri
,
B.
,
Omprakas
,
M. A.
,
Rohit
,
C. B.
, and
Kartheek Raja
,
U.
,
2020
, “
The Development of Fuel Cell Electric Vehicles—A Review
,”
Mater. Today: Proc.
,
45
(
2
), pp.
1181
1187
.
7.
Trencher
,
G.
,
Taeihagh
,
A.
, and
Yarime
,
M.
,
2020
, “
Overcoming Barriers to Developing and Diffusing Fuel-Cell Vehicles: Governance Strategies and Experiences in Japan
,”
Energy Policy
,
142
(
1
), p.
111533
.
8.
Ren
,
X.
,
Dong
,
L.
,
Xu
,
D.
, and
Hu
,
B.
,
2020
, “
Challenges Towards Hydrogen Economy in China
,”
Int. J. Hydrogen Energy
,
45
(
59
), pp.
31326
34345
.
9.
Rivard
,
E.
,
Trudeau
,
M.
, and
Zaghib
,
K.
,
2019
, “
Hydrogen Storage for Mobility: A Review
,”
Materials
,
12
(
12
), p.
1973
.
10.
Li
,
M.
,
Bai
,
Y.
,
Zhang
,
C.
,
Song
,
Y.
,
Jiang
,
S.
,
Grouset
,
D.
, and
Zhang
,
M.
,
2019
, “
Review on the Research of Hydrogen Storage System Fast Refueling in Fuel Cell Vehicle
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
10677
10693
.
11.
Kim
,
S. C.
,
Lee
,
S. H.
, and
Yoon
,
K. B.
,
2010
, “
Thermal Characteristics During Hydrogen Fueling Process of Type IV Cylinder
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
6830
6835
.
12.
13.
Hong
,
B. K.
, and
Kim
,
S. H.
,
2018
, “
(Invited) Recent Advances in Fuel Cell Electric Vehicle Technologies of Hyundai
,”
ECS Trans.
,
86
(
13
), pp.
3
11
.
14.
Toyota
,
2020
, 2020 Mirai.
15.
Franck
,
D.
, and
Franck
,
H.
,
2019
,
Vehicle Specifications of Honda Clarity Fuel Cell, Technical Sheet
.
16.
Deloitte
,
2019
,
Fueling the Future of Mobility Hydrogen and Fuel Cell Solutions for Transportation, Technical Sheet
.
17.
Wolf
,
J.
,
2003
, “
Liquid-Hydrogen Technology for Vehicles
,”
MRS Bull.
,
27
(
9
), pp.
684
687
.
18.
Mori
,
D.
, and
Hirose
,
K.
,
2009
, “
Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4569
4574
.
19.
Yanxing
,
Z.
,
Maoqiong
,
G.
,
Yuan
,
Z.
,
Xueqiang
,
D.
, and
Jun
,
S.
,
2019
, “
Thermodynamics Analysis of Hydrogen Storage Based on Compressed Gaseous Hydrogen, Liquid Hydrogen and Cryo-compressed Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16833
16840
.
20.
Durbin
,
D. J.
, and
Malardier-Jugroot
,
C.
,
2013
, “
Review of Hydrogen Storage Techniques for on Board Vehicle Applications
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14595
14617
.
21.
Baetcke
,
L.
, and
Kaltschmitt
,
M.
,
2018
,
Hydrogen Storage for Mobile Application: Technologies and Their Assessment
,
Elsevier Ltd., Academic Press
,
Boston, MA
, pp.
167
206
.
22.
Chabane
,
D.
,
Ibrahim
,
M.
,
Harel
,
F.
,
Djerdir
,
A.
,
Candusso
,
D.
, and
Elkedim
,
O.
,
2019
, “
Energy Management of a Thermally Coupled Fuel Cell System and Metal Hydride Tank
,”
Int. J. Hydrogen Energy
,
44
(
50
), pp.
27553
27563
.
23.
Davids
,
M. W.
,
Lototskyy
,
M.
,
Malinowski
,
M.
,
van Schalkwyk
,
D.
,
Parsons
,
A.
,
Pasupathi
,
S.
,
Swanepoel
,
D.
, and
van Niekerk
,
T.
,
2019
, “
Metal Hydride Hydrogen Storage Tank for Light Fuel Cell Vehicle
,”
Int. J. Hydrogen Energy
,
44
(
55
), pp.
29263
29272
.
24.
Lim
,
K. L.
,
Kazemian
,
H.
,
Yaakob
,
Z.
, and
Daud
,
W. R. W.
,
2010
, “
Solid-State Materials and Methods for Hydrogen Storage: A Critical Review
,”
Chem. Eng. Technol.
,
33
(
2
), pp.
213
226
.
25.
Yao
,
Q.
,
Ding
,
Y.
, and
Lu
,
Z.-H.
,
2020
, “
Noble-Metal-Free Nanocatalysts for Hydrogen Generation From Boron- and Nitrogen-Based Hydrides
,”
Inorg. Chem. Front.
,
7
(
20
), pp.
3837
3874
.
26.
Fakioǧlu
,
E.
,
Yürüm
,
Y.
, and
Veziroǧlu
,
T. N.
,
2004
, “
A Review of Hydrogen Storage Systems Based on Boron and Its Compounds
,”
Int. J. Hydrogen Energy
,
29
(
13
), pp.
1371
1376
.
27.
Tomoda
,
K.
,
Katayama
,
N.
,
Hoshi
,
N.
,
Yoshizaki
,
A.
, and
Hirata
,
K.
,
2015
, “
Modeling of Sodium Tetrahydroborate Power System for Fuel Cell Vehicle
,”
ECS Trans.
,
65
(
1
), pp.
33
43
.
28.
Li
,
S. C.
, and
Wang
,
F. C.
,
2016
, “
The Development of a Sodium Borohydride Hydrogen Generation System for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3038
3051
.
29.
Wang
,
F. C.
, and
Fang
,
W. H.
,
2017
, “
The Development of a PEMFC Hybrid Power Electric Vehicle with Automatic Sodium Borohydride Hydrogen Generation
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10376
10389
.
30.
Sanli
,
A. E.
,
Yilmaz
,
E. S.
,
Ozden
,
S. K.
,
Gordesel
,
M.
, and
Gunlu
,
G.
,
2018
, “
A Direct Borohydride–Peroxide Fuel Cell–LiPO Battery Hybrid Motorcycle Prototype—II
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
992
1005
.
31.
Brooks
,
K. P.
,
Sprik
,
S. J.
,
Tamburello
,
D. A.
, and
Thornton
,
M. J.
,
2018
, “
Design Tool for Estimating Chemical Hydrogen Storage System Characteristics for Light-Duty Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
43
(
18
), pp.
8846
8858
.
32.
Brooks
,
K. P.
,
Sprik
,
S. J.
,
Tamburello
,
D. A.
, and
Thornton
,
M. J.
,
2020
, “
Design Tool for Estimating Metal Hydride Storage System Characteristics for Light-Duty Hydrogen Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
24917
24927
.
33.
Fernández
,
,
Cilleruelo
,
F. B.
, and
Martínez
,
I. V.
,
2016
, “
A New Approach to Battery Powered Electric Vehicles: A Hydrogen Fuel-Cell-Based Range Extender System
,”
Int. J. Hydrogen Energy
,
41
(
8
), pp.
4808
4819
.
34.
Casolari
,
B. L.
,
Ellington
,
M. A.
,
Oros
,
J. M.
,
Schuttinger
,
P.
,
Radley
,
C. J.
,
Kiley
,
K. A.
, and
Klebanoff
,
L. E.
,
2014
, “
Model Study of a Fuel Cell Range Extender for a Neighborhood Electric Vehicle (NEV)
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10757
10787
.
35.
Li
,
T.
,
Liu
,
H.
,
Zhao
,
D.
, and
Wang
,
L.
,
2016
, “
Design and Analysis of a Fuel Cell Supercapacitor Hybrid Construction Vehicle
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12307
12319
.
36.
Samsun
,
R. C.
,
Krupp
,
C.
,
Baltzer
,
S.
,
Gnörich
,
B.
,
Peters
,
R.
, and
Stolten
,
D.
,
2016
, “
A Battery-Fuel Cell Hybrid Auxiliary Power Unit for Trucks: Analysis of Direct and Indirect Hybrid Configurations
,”
Energy Convers. Manage.
,
127
(
1
), pp.
312
323
.
37.
Das
,
H. S.
,
Tan
,
C. W.
, and
Yatim
,
A. H. M.
,
2017
, “
Fuel Cell Hybrid Electric Vehicles: A Review on Power Conditioning Units and Topologies
,”
Renewale Sustainable Energy Rev.
,
76
, pp.
268
291
.
38.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
,
2002
, “
Proton Exchange Membrane Fuel Cell System Model for Automotive Vehicle Simulation and Control
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
20
27
.
39.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
,
2002
, “
On-board Reforming Effects on the Performance of Proton Exchange Membrane (PEM) Fuel Cell Vehicles
,”
ASME J. Energy Resour. Technol.
,
124
(
3
), pp.
191
196
.
40.
Feroldi
,
D.
, and
Carignano
,
M.
,
2016
, “
Sizing for Fuel Cell/Supercapacitor Hybrid Vehicles Based on Stochastic Driving Cycles
,”
Appl. Energy
,
183
(
1
), pp.
645
658
.
41.
Huang
,
P. H.
,
Kuo
,
J. K.
, and
Han
,
C. Y.
,
2017
, “
Numerical Investigation Into Slope-Climbing Capability of Fuel Cell Hybrid Scooter
,”
Appl. Therm. Eng.
,
110
(
1
), pp.
921
930
.
42.
Gao
,
D.
,
Jin
,
Z.
,
Zhang
,
J.
,
Li
,
J.
, and
Ouyang
,
M.
,
2016
, “
Comparative Study of Two Different Powertrains for a Fuel Cell Hybrid Bus
,”
J. Power Sources
,
319
(
1
), pp.
9
18
.
43.
Karaoğlan
,
M. U.
,
İnce
,
A. C.
,
Colpan
,
C. O.
,
Glüsen
,
A.
,
Kuralay
,
N. S.
,
Müller
,
M.
, and
Stolten
,
D.
,
2019
, “
Simulation of a Hybrid Vehicle Powertrain Having Direct Methanol Fuel Cell System Through a Semi-theoretical Approach
,”
Int. J. Hydrogen Energy
,
44
(
34
), pp.
18981
18992
.
44.
Shusheng
,
X.
,
Qiujie
,
S.
,
Baosheng
,
G.
,
Encong
,
Z.
, and
Zhankuan
,
W.
,
2020
, “
Research and Development of On-board Hydrogen-Producing Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17844
17857
.
45.
Wang
,
Y.
,
Li
,
J.
,
Tao
,
Q.
,
Bargal
,
M. H.
,
Yu
,
M.
,
Yuan
,
X.
, and
Su
,
C.
,
2020
, “
Thermal Management System Modeling and Simulation of a Full-Powered Fuel Cell Vehicle
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061304
.
46.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
47.
Kandidayeni
,
M.
,
Macias
,
A.
,
Khalatbarisoltani
,
A.
,
Boulon
,
L.
, and
Kelouwani
,
S.
,
2019
, “
Benchmark of Proton Exchange Membrane Fuel Cell Parameters Extraction With Metaheuristic Optimization Algorithms
,”
Energy
,
183
(
1
), pp.
912
925
.
48.
Chang
,
K. Y.
,
2011
, “
The Optimal Design for PEMFC Modeling Based on Taguchi Method and Genetic Algorithm Neural Networks
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13683
13694
.
49.
Spiegel
,
C.
,
2011
,
PEM Fuel Cell Modeling and Simulation Using Matlab
,
Elsevier Ltd
,
Amsterdam, The Netherlands
.
50.
Xiao
,
J.
,
Bénard
,
P.
, and
Chahine
,
R.
,
2016
, “
Charge-Discharge Cycle Thermodynamics for Compression Hydrogen Storage System
,”
Int. J. Hydrogen Energy
,
41
(
12
), pp.
5531
5539
.
51.
Li
,
F.
,
Yang
,
T.
,
Xiao
,
J.
,
Bénard
,
P.
, and
Chahine
,
R.
,
2019
, “
Numerical Solution for Thermodynamic Model of Charge-Discharge Cycle in Compressed Hydrogen Tank
,”
Energy Procedia
,
158
(
1
), pp.
2145
2151
.
52.
Chen
,
F. Q.
,
Zhang
,
M.
,
Qian
,
J. Y.
,
Chen
,
L. L.
, and
Jin
,
Z. J.
,
2017
, “
Pressure Analysis on Two-Step High Pressure Reducing System for Hydrogen Fuel Cell Electric Vehicle
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
11541
11552
.
53.
Hua
,
T. Q.
,
Roh
,
H. S.
, and
Ahluwalia
,
R. K.
,
2017
, “
Performance Assessment of 700-Bar Compressed Hydrogen Storage for Light Duty Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25121
25129
.
54.
Pinto
,
P. J. R.
,
Sousa
,
T.
,
Fernandes
,
V. R.
,
Pinto
,
A. M. F. R.
, and
Rangel
,
C. M.
,
2013
, “
Simulation of a Stand-Alone Residential PEMFC Power System With Sodium Borohydride as Hydrogen Source
,”
Int. J. Electr. Power Energy Syst.
,
49
(
1
), pp.
57
65
.
55.
Shimpalee
,
S.
,
Beuscher
,
U.
, and
Van Zee
,
J. W.
,
2006
, “
Investigation of Gas Diffusion Media Inside PEMFC Using CFD Modeling
,”
J. Power Sources
,
163
(
1
), pp.
480
489
.
56.
Francia
,
C.
,
Ijeri
,
V. S.
,
Specchia
,
S.
, and
Spinelli
,
P.
,
2011
, “
Estimation of Hydrogen Crossover Through Nafion® Membranes in PEMFCs
,”
J. Power Sources
,
196
(
4
), pp.
1833
1839
.
You do not currently have access to this content.