Abstract

The fuels (diesel/biodiesel blends) for diesel engines must possess a minimum of lubricating characteristics to prolong the life of some of the engine vital parts lubricated by the fuel itself. Hence, the tribological characteristic of the modified nanofluid fuel blends needs to be investigated for its suitability and sustainability. In the present study, an experimental analysis on the tribological aspect of fuel blends comprising 40% Acacia concinna biodiesel and 60% diesel (by volume) mixed with titanium dioxide (TiO2) nanoparticles in a concentration of 50–200 mg/l was conducted. The prepared fuel blends in varying volume concentrations were tested on a four-ball tribotester. The effects of varying operating parameters such as load and temperature as well as oxidation of biodiesel fuel blend on friction and wear behavior were evaluated with the help of three-dimensional (3D) surface plots (response surface methodology approach). Further, wear patch diameter, wear debris, wear volume, and flash temperature parameter were analyzed using optical micrographs and ferrographs. The obtained results revealed that despite having an influence of all parameters, the effect of TiO2 nanoparticles is more significant in improving the antiwear/friction characteristics of modified nanofluid fuel blends. It was observed that a TiO2 concentration of 150 mg/l in fuel blend was found to be the most suitable to reduce the friction, wear, and wear volume compared with those of diesel and biodiesel blend.

References

1.
Saxena
,
V.
,
Kumar
,
N.
, and
Saxena
,
V. K.
,
2017
, “
A Comprehensive Review on Combustion and Stability Aspects of Metal Nanoparticles and Its Additive Effect on Diesel and BD Fuelled C.I. Engine
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
563
588
. 10.1016/j.rser.2016.11.067
2.
Knothe
,
G.
, and
Razon
,
L. F.
,
2017
, “
Biodiesel Fuels
,”
Prog. Energy Combust. Sci.
,
58
, pp.
36
59
. 10.1016/j.pecs.2016.08.001
3.
Kumar
,
N.
,
Varun
,
G.
, and
Chauhan
,
S. R.
,
2016
, “
Evaluation of Endurance Characteristics for a Modified Diesel Engine Runs on Jatropha Biodiesel
,”
Appl. Energy
,
155
, pp.
253
269
. 10.1016/j.apenergy.2015.05.110
4.
Kumar
,
N.
,
Varun
,
G.
, and
Chauhan
,
S. R.
,
2013
, “
Performance and Emission Characteristics of Biodiesel From Different Origins: A Review
,”
Renew. Sustain. Energy Rev.
,
21
, pp.
633
658
. 10.1016/j.rser.2013.01.006
5.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Res. Technol.
,
134
(
3
), p.
032202
. 10.1115/1.4006655
6.
Saxena
,
V.
,
Kumar
,
N.
, and
Saxena
,
V. K.
,
2018
, “
Biodiesel Synthesis From Acacia Concinna Seed Oil: A Comprehensive Study
,”
Energy Sources, Part A: Recovery, Utilization, Environ. Effects
,
17
(
40
), pp.
1
12
. 10.1080/15567036.2018.1486912
7.
Kumar
,
N.
,
Varun
,
G.
, and
Chauhan
,
S. R.
,
2014
, “
Evaluation of the Effects of Engine Parameters on Performance and Emissions of Diesel Engine Operating With Biodiesel Blend
,”
Int. J. Ambient Energy
,
37
(
2
), pp.
121
135
. 10.1080/01430750.2014.907208
8.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
And Gupta
,
A. K.
,
2019
, “
Enhancing Diesel Engine Performance and Reducing Emission Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Res. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
9.
Kumar
,
N.
,
2017
, “
Oxidative Stability of Biodiesel: Causes, Effects and Prevention
,”
Fuel
,
190
, pp.
328
350
. 10.1016/j.fuel.2016.11.001
10.
Alves
,
S. M.
,
Farias
,
A. C. M.
,
Melo
,
V. S.
, and
Junior
,
J. J. O.
,
2018
, “
Effect of Soya Bean Biodiesel Addition on Tribological Performance of Ultra Low Sulfur Diesel
,”
ASME J. Tribol.
,
141
(
2
), p.
021803
. 10.1115/1.4041207
11.
Singh
,
P.
,
Varun
,
G.
, and
Chauhan
,
S. R.
,
2017
, “
Influence of Temperature on Tribological Performance of Dual Biofuel
,”
Fuel
,
307
, pp.
751
762
. 10.1016/j.fuel.2017.05.094
12.
Kalam
,
M. A.
,
Masjuki
,
H. H.
, and
Edzrol
,
N. M.
,
2005
, “
Wear and Lubrication Characteristics of Multi-Cylinder Diesel Engine Using Vegetable Oil Blended Fuel
,”
Proceedings of WTC, World Tribology Congress-III
,
Washington, DC
,
Nov. 17
.
13.
Bansari
,
M. A. N.
, and
Shirnashan
,
A.
,
2018
, “
An Experimental Study of Friction and Wear Characteristics of Sunflower and Soya Bean Oil Methyl Ester in the Steady State Conditions by Four Ball Wear Testing Machine
,”
ASME J. Tribol.
,
141
(
4
), p.
044501
. 10.1115/1.4042390
14.
Maru
,
M. M.
,
Trommer
,
R. M.
,
Almeida
,
F. A.
,
Silva
,
R. F.
, and
Acheteac
,
C. A.
,
2013
, “
Assessment of the Lubricant Behavior of Biodiesel Fuels Using Stribeck Curves
,”
Fuel Proc. Technol.
,
116
, pp.
130
134
. 10.1016/j.fuproc.2013.05.010
15.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Impact of Binary Biofuel Blends on Lubricating Oil Degradation in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032203
. 10.1115/1.4041411
16.
Pehan
,
S.
,
Jerman
,
M. S.
,
Kegl
,
M.
, and
Kegl
,
B.
,
2009
, “
Biodiesel Influence on Tribology Characteristics of a Diesel Engine
,”
Fuel
,
88
(
6
), pp.
970
979
. 10.1016/j.fuel.2008.11.027
17.
Haseeb
,
A. S. M. A.
,
Sia
,
S. Y.
,
Fazal
,
M. A.
, and
Masjuki
,
H. H.
,
2010
, “
Effect of Temperature on Tribological Properties of Palm Biodiesel
,”
Energy
,
35
(
3
), pp.
1460
1464
. 10.1016/j.energy.2009.12.001
18.
Fazal
,
M. A.
,
Haseeb
,
A. S. M. A.
, and
Masjuki
,
H. H.
,
2013
, “
Investigation of Friction and Wear Characteristics of Palm Biodiesel
,”
Energy Convers. Manag.
,
67
, pp.
251
256
. 10.1016/j.enconman.2012.12.002
19.
Mosarof
,
M. H.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Alabdulkarem
,
A.
,
Habibullah
,
M.
,
Arslan
,
A.
, and
Monirul
,
I. M.
,
2016
, “
Assessment of Friction and Wear Characteristics of Calophylluminophyllum and Palm Biodiesel
,”
Ind. Crops Prod.
,
83
, pp.
470
483
. 10.1016/j.indcrop.2015.12.082
20.
Masjuki
,
H. H.
, and
Maleque
,
M. A.
,
1996
, “
Investigation of the Anti-Wear Characteristics of Palm Oil Methyl Ester Using a Four-Ball Tribometer Test
,”
Wear
,
206
(
1
), pp.
179
186
. 10.1016/s0043-1648(96)07351-6
21.
Kumar
,
N.
,
Varun
,
G.
, and
Chauhan
,
S. R.
,
2014
, “
Analysis of Tribological Performance of Biodiesel
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
228
(
7
), pp.
797
807
. 10.1177/1350650114532452
22.
Saxena
,
V.
,
Kumar
,
N.
, and
Saxena
,
V. K.
,
2019
, “
Multi-Objective Optimization of Modified Nanofluid Fuel Blends at Different TiO2 Nanoparticle Concentration in Diesel Engine: Experimental Assessment and Modeling
,”
Appl. Energy
,
284
, pp.
330
353
. 10.1016/j.apenergy.2019.04.091
23.
Mehregan
,
M.
, and
Moghiman
,
M.
,
2018
, “
Effects of Nano-Additives on Pollutants Emission and Engine Performance in a Urea-SCR Equipped Diesel Engine Fueled With Blended-Biodiesel
,”
Fuel
,
222
, pp.
402
406
. 10.1016/j.fuel.2018.02.172
24.
Prabu
,
A.
,
2018
, “
Engine Characteristics Studies by Application of Anti-Oxidants and Nanoparticles as Additives in Biodiesel Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082203
. 10.1115/1.4039736
25.
Xia
,
W.
,
Zhao
,
J.
,
Wu
,
H.
,
Jiao
,
S.
,
Zhao
,
X.
,
Zhang
,
X.
,
Xu
,
J.
, and
Jiang
,
Z.
,
2018
, “
Analysis of Oil-In-Water Based Nano-Lubricants With Varying Mass Fractions of Oil and TiO2 Nanoparticles
,”
Wear
,
396–397
, pp.
162
171
. 10.1016/j.wear.2017.02.031
26.
Guzman Borda
,
F. L.
,
Ribeiro de Oliveira
,
S. J.
,
Seabra Monteiro Lazaro
,
L. M.
, and
Kalab Leiróz
,
A. J.
,
2018
, “
Experimental Investigation of the Tribological Behavior of Lubricants With Additive Containing Copper Nanoparticles
,”
Tribol. Int.
,
117
, pp.
52
58
. 10.1016/j.triboint.2017.08.012
27.
Gara
,
L.
, and
Zou
,
Q.
,
2013
, “
Friction and Wear Characteristics of Oil Based ZnO Nano-Fluids
,”
Tribol. Trans.
,
562
(
2
), pp.
236
244
. 10.1080/10402004.2012.740148
28.
Wu
,
N.
,
Hu
,
N.
,
Zhou
,
G.
, and
Wu
,
J.
,
2017
, “
Tribological Properties of Lubricating Oil With Micro/Nano-Scale Particles
,”
J. Experiment. Nano-Sci.
,
13
(
1
), pp.
27
38
. 10.1080/17458080.2017.1405164
29.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Tribological and Vibration Studies on Newly Developed Nano-Composite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
140
(
3
), p.
032001
. 10.1115/1.4038100
30.
Lie
,
F.
,
Covaliu
,
C.
, and
Chişiu
,
G.
,
2014
, “
Tribological Study of Ecological Lubricants Containing Titanium Dioxide Nanoparticles
,”
Appl. Mech. Mater.
,
658
, pp.
323
328
. 10.4028/www.scientific.net/AMM.658.323
31.
Ingole
,
S.
,
Charanpahari
,
A.
,
Kakade
,
A.
,
Umare
,
S. S.
,
Bhatt
,
D. V.
, and
Menghani
,
J.
,
2013
, “
Tribological Behavior of Nano TiO2 as an Additive in Base Oil
,”
Wear
,
301
(
1–2
), pp.
776
789
. 10.1016/j.wear.2013.01.037
32.
Suryawanshi
,
S.
, and
Pattiwar
,
J. T.
,
2018
, “
Effect of TiO2 Nanoparticles Blended With Lubricating Oil on the Tribological Performance of the Journal Bearing
,”
Tribol. Ind.
,
40
(
3
), pp.
370
391
. 10.24874/ti.2018.40.03.04
33.
Cortes
,
V.
,
Sanchez
,
K.
,
Gonzalez
,
R.
,
Alcoutlabi
,
M.
, and
Ortega
,
J. A.
,
2020
, “
The Performance of SiO2 and TiO2 Nanoparticles as Lubricant Additives in Sunflower Oil
,”
Lubricants
,
8
(1), p.
10
. 10.3390/lubricants8010010
34.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Qingping
,
C.
,
Turkson
,
R. F.
, and
Bicheng
,
C.
,
2016
, “
Improving the Tribological Characteristics of Piston Ring Assembly in Automotive Engines Using Al2O3 and TiO2 Nanomaterials as Nano-Lubricant Additives
,”
Tribol. Int.
,
103
, pp.
540
554
. 10.1016/j.triboint.2016.08.011
35.
Anand
,
R.
,
Raina
,
A.
,
Haq
,
M. I. U.
,
Mir
,
M. J.
,
Gulzar
,
O.
, and
Wani
,
M. F.
,
2020
, “
Synergism of TiO2 and Graphene as Nano-Additives in Bio-Based Cutting Fluid—An Experimental Investigation
,”
Tribol. Trans.
10.1080/10402004.2020.1842953
36.
Gulzar
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Varman
,
M.
,
Zulkifli
,
N. W. M.
,
Mufti
,
R. A.
,
Zahid
,
R.
, and
Yunus
,
R.
,
2017
, “
Dispersion Stability and Tribological Characteristics of TiO2/SiO2 Nanocomposite-Enriched Biobased Lubricant
,”
Tribol. Trans.
,
60
(
4
), pp.
670
680
. 10.1080/10402004.2016.1202366
37.
Alghani
,
W.
,
Ab Karim
,
M. S.
,
Bagheri
,
S.
,
Amran
,
N. A. M.
, and
Gulzar
,
M.
,
2019
, “
Enhancing the Tribological Behavior of Lubricating Oil by Adding TiO2, Graphene, and TiO2/Graphene Nanoparticles
,”
Tribol. Trans.
,
62
(
3
), pp.
452
463
. 10.1080/10402004.2019.1573282
38.
Harshkumar Patel
,
H.
,
Subhash Shah
,
S.
,
Ramadan Ahmed
,
R.
, and
SezaiUcan
,
S.
,
2018
, “
Effects of Nanoparticles and Temperature on Heavy Oil Viscosity
,”
J. Petrol. Sci. Eng.
,
167
, pp.
819
828
. 10.1016/j.petrol.2018.04.069
39.
Kragelsky
,
I. V.
, and
Alisin
,
V. V.
,
1981
,
Friction Wear Lubrication, Tribology Handbook
,
MIR Publishers
,
Moscow
.
40.
Holman
,
J. P.
,
2007
,
Experimental Methods for Engineers
, 7th ed.,
Special Edition Tata McGraw-Hill
,
New Delhi
.
41.
Kumar
,
N.
,
2019
, “Study of Oxygenated Eco Fuel Applications in CI Engine, Gas Turbine and Jet Engine,”
Advanced Biofuels: Applications, Technologies and Environmental Sustainability
,
K.
Azad
, and
M.
Rasul
, eds.,
Elsevier
,
New York
, pp.
405
437
.
You do not currently have access to this content.