Abstract

We propose a hybrid renewable energy system—a geothermal energy storage system (GeoTES) with solar—to provide low-cost dispatchable power at various timescales from daily, to weekly, to seasonally. GeoTES with solar uses a concentrating solar power collector field to produce hot water that is injected into a sedimentary basin to create a synthetic geothermal resource. The stored geothermal heat can then be dispatched when required by the electrical grid. GeoTES is particularly valuable for a grid with a high penetration of non-flexible renewable technologies such as photovoltaic and wind power. In this work, a sophisticated hybrid model is developed to assess the technical and economic potential of GeoTES by combining IPSEpro, which is a power-cycle simulation tool, and SAM, an economic analysis tool by National Renewable Energy Laboratory (NREL). The analysis shows with proper initial charging period that the heat loss in storage is almost negligible and is a suitable technology for long-term energy storage. Various power-cycle options are evaluated, and the most suitable power cycle is selected for further study. Annual calculations of the GeoTES system indicate that a levelized cost of storage (LCOS) of 12.4 ¢/kWhe can be achieved for seasonal storage of 4000 h; this value is much lower than the existing long-term storage. The LCOS of GeoTES is insensitive to the storage duration above 8 h, unlike battery and molten-salt thermal storage systems. This result demonstrates that GeoTES can be a competitive seasonal storage technology in the future electricity market. The levelized cost of electricity of the GeoTES system is also carefully analyzed and can vary between 10.0 and 16.4 ¢/kWhe, depending on solar-collector prices.

References

1.
Jülch
,
V.
,
2016
, “
Comparison of Electricity Storage Options Using Levelized Cost of Storage (LCOS) Method
,”
Appl. Energy
,
183
, pp.
1594
1606
. 10.1016/j.apenergy.2016.08.165
2.
McTigue
,
J. D.
,
Castro
,
J.
,
Mungas
,
G.
,
Kramer
,
N.
,
King
,
J.
,
Turchi
,
C.
, and
Zhu
,
G.
,
2018
, “
Hybridizing a Geothermal Power Plant With Concentrating Solar Power and Thermal Storage to Increase Power Generation and Dispatchability
,”
Appl. Energy
,
228
, pp.
183
1852
. 10.1016/j.apenergy.2018.07.064
3.
Lazard
,
2017
,
Lazard’s Levelized Cost of Storage Analysis-Version 3.0
,
Lazard
, https://www.lazard.com/media/450338/lazard-levelized-cost-of-storage-version-30.pdf
4.
Sharan
,
P.
,
Neises
,
T.
,
McTigue
,
J. D.
, and
Turchi
,
C.
,
2019
, “
Cogeneration Using Multi-Effect Distillation and a Solar-Powered Supercritical Carbon Dioxide Brayton Cycle
,”
Desalination
,
459
, pp.
20
33
. 10.1016/j.desal.2019.02.007
5.
Jülch
,
V.
,
Jürgensen
,
J.
,
Hartmann
,
N.
,
Thomsen
,
J.
, and
Schlegl
,
T.
,
2015
, “
Levelized Cost of Storage Method Applied to Compressed Air Energy Storage
,”
Proceedings of SmartER Europe Conference
,
University of Duisburg-Essen
.
6.
NREL
, https://sam.nrel.gov/,
System Advisor Model 2017.09.05
.
7.
Sharan
,
P.
,
Turchi
,
C.
, and
Kurup
,
P.
,
2019
, “
Optimal Design of Phase Change Material Storage for Steam Production Using Annual Simulation
,”
Sol. Energy
,
185
, pp.
494
507
. 10.1016/j.solener.2019.04.077
8.
Patel
,
B.
,
Desai
,
N. B.
, and
Kachhwaha
,
S. S.
,
2017
, “
Thermo-Economic Analysis of Solar-Biomass Organic Rankine Cycle Powered Cascaded Vapor Compression-Absorption System
,”
Sol. Energy
,
157
, pp.
920
933
. 10.1016/j.solener.2017.09.020
9.
Locatelli
,
G.
,
Palerma
,
E.
, and
Mancini
,
M.
,
2015
, “
Assessing the Economics of Large Energy Storage Plants With an Optimisation Methodology
,”
Energy
,
83
, pp.
15
28
. 10.1016/j.energy.2015.01.050
10.
Punys
,
P.
,
Baublys
,
R.
,
Kasiulis
,
E.
, and
V
,
A.
,
2013
, “
Assessment of Renewable Electricity Generation by Pumped Storage Power Plants in EU Member States
,”
Renew. Sust. Energy Rev.
,
26
, pp.
190
200
. 10.1016/j.rser.2013.05.072
11.
Karellas
,
S.
, and
Tzouganatos
,
N. C.
,
2014
, “
Comparison of the Performance of Compressed-Air and Hydrogen Energy Storage Systems : Karpathos Island Case Study
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
865
882
. 10.1016/j.rser.2013.07.019
12.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy.
137
, pp.
800
811
. 10.1016/j.apenergy.2014.08.039 10.1016/j.apenergy.2014.08.039
13.
White
,
A. J.
,
Parks
,
G.
, and
Markides
,
C. N.
,
2013
, “
Thermodynamic Analysis of Pumped Thermal Electricity Storage
,”
Appl. Therm. Eng.
,
53
(
2
), pp.
291
298
. 10.1016/j.applthermaleng.2012.03.030
14.
Farres-antunez
,
P.
,
Xue
,
H.
, and
White
,
A.
,
2018
, “
Thermodynamic Analysis and Optimisation of a Combined Liquid air and Pumped Thermal Energy Storage Cycle
,”
J. Energy Storage
,
18
, pp.
90
102
. 10.1016/j.est.2018.04.016
15.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
Liquid Air Energy Storage—Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
. 10.1016/j.apenergy.2014.07.109
16.
Menéndez
J
,
Ordóñez
,
A.
,
Álvarez
,
R.
, and
Loredo
,
J.
,
2019
, “
Energy From Closed Mines : Underground Energy Storage and Geothermal Applications
,”
Renewable Sustainability Energy Rev.
,
108
, pp.
498
512
. 10.1016/j.rser.2019.04.007
17.
Pereira da Cunha
,
J.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review
,”
Appl. Energy
,
177
, pp.
227
238
. 10.1016/j.apenergy.2016.05.097
18.
Scapino
,
L.
,
Zondag
,
H.
,
Van Bael
,
J.
,
Diriken
,
J.
, and
Rindt
,
C.
,
2017
, “
Energy Density and Storage Capacity Cost Comparison of Conceptual Solid and Liquid Sorption Seasonal Heat Storage Systems for Low-Temperature Space Heating
,”
Renewable Sustainability Energy Rev
,
76
, pp.
1314
1331
. 10.1016/j.rser.2017.03.101
19.
Zondag
,
H.
,
Kikkert
,
B.
,
Smeding
,
S.
,
Boer
,
R. d.
, and
Bakker
,
M.
,
2013
, “
Prototype Thermochemical Heat Storage With Open Reactor System
,”
Appl. Energy
,
109
, pp.
360
365
. 10.1016/j.apenergy.2013.01.082
20.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
. 10.1115/1.1467922
21.
Zhu
,
G.
, and
Lewandowski
,
A.
,
2012
, “
A New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle Optical Intercept Calculation (FirstOPTIC)
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041005
. 10.1115/1.4006963
22.
Porro
,
C.
,
Esposito
,
A.
,
Augustine
,
C.
, and
Roberts
,
B.
,
2012
, “
An Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States
,”
Proceedings of Geothermal Research Council Transaction
,
Reno, NV
.
23.
Kanoğlu
,
M.
, and
Çengel
,
Y. A.
,
1999
, “
Retrofitting a Geothermal Power Plant to Optimize Performance: A Case Study
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp.
295
301
. 10.1115/1.2795996
24.
Dagdas
,
A.
,
2007
, “
Performance Analysis and Optimization of Double-Flash Geothermal Power Plants
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
125
133
. 10.1115/1.2719204
25.
Podgorney
,
R.
,
Huang
,
H.
, and
Gaston
,
D. M.
,
2010
,
Massively Parallel Fully Coupled Implicit Modeling of Coupled Thermal-Hydrological-Mechanical Processes for Enhanced Geothermal System Reservoirs
,
Idaho National Laboratory
,
Idaho Falls, ID
.
26.
Manger
,
E.
,
1963
,
Porosity and Bulk Density of Sedimentary Rocks
,
U.S. Department of Interior
,
Washington, DC
27.
Augustine
,
C.
,
Ho
,
J.
, and
Blair
,
N.
,
2019
,
GeoVision Analysis Supporting Task Force Report: Electric Sector Potential to Penetration
,
National Renewable Energy Laboratory
,
Golden, CO.
28.
Mines
,
G.
,
2016
, “
Recent Developments With GETEM (Geothermal Electricity Technology Evaluation Model)
,”
The GRC Transactions
,
40
, pp.
9
18
.
29.
Burkholder
,
F.
, and
Kutscher
,
C.
,
2009
,
Heat Loss Testing of Schott’s 2008 PTR70 Parabolic Trough Receiver
,
NREL
,
Golden, CO
.
30.
IPSEpro
,
2016
, “IPSEpro: A Software System for Calculating Heat Balances and Simulating Processes,”
SimTech Simulation Technology
,
California
.
31.
McTigue
,
J. D.
,
Wendt
,
D.
,
Kitz
,
K.
,
Gunderson
,
J.
,
Kincaid
,
N.
, and
Zhu
,
G.
,
2020
, “
Assessing Geothermal/Solar Hybridization—Integrating a Solar Thermal Topping Cycle Into a Geothermal Bottoming Cycle With Energy Storage
,”
Appl. Therm. Eng
,
171
, p.
115121
. 10.1016/j.applthermaleng.2020.115121
32.
NREL
,
2017
,
Annual Technology Baseline 2017
,
National Renewable Energy Laboratory
,
Golden, CO
. http://atb.nrel.gov/
33.
Lukawski
,
M.
,
Anderson
,
B.
,
Augustine
,
C.
,
Capuano
,
L.
,
Beckers
,
K.
,
Livesay
,
B.
, and
Tester
,
J.
,
2014
, “
Cost Analysis of Oil, Gas, and Geothermal Well Drilling
,”
J. Pet. Sci. Eng.
,
118
, pp.
1
14
. 10.1016/j.petrol.2014.03.012
34.
Kincaid
,
N.
,
Mungas
,
G.
,
Kramer
,
N.
,
Wagner
,
M.
, and
Zhu
,
G.
,
2018
, “
An Optical Performance Comparison of Three Concentrating Solar Power Collector Designs in Linear Fresnel, Parabolic Trough, and Central Receiver
,”
Appl. Energy
,
231
, pp.
1109
1121
. 10.1016/j.apenergy.2018.09.153
35.
Georgiou
,
S.
,
Shah
,
N.
, and
Markides
,
C. N.
,
2018
, “
A Thermo-Economic Analysis and Comparison of Pumped-Thermal and Liquid- Air Electricity Storage Systems
,”
Appl. Energy
,
226
, pp.
1119
1133
. 10.1016/j.apenergy.2018.04.128
You do not currently have access to this content.