Abstract
New temperature limits model of the Ranque–Hilsch vortex tube has been proposed within the presented paper. The model originates from the local compression/expansion and inner friction hypothesis anticipated to be responsible for the Ranque–Hilsch effect. The model in a presented form provides a fair estimation of the temperature limits at each outlet, hence enabling its application on new thermodynamic cycles studies that include vortex tube in the process. The drawback of the proposed model is its simplification by neglecting the impact of kinetic energy on the anticipated temperature values at each outlet.
References
1.
Ranque
, G.
, 1933
, “Experiments on Expansion in a Vortex With Simultaneous Exhaust of Hot Air and Cold Air
,” Le Journal de Physique et Le Radium
, 4
, pp. 112
–114
.2.
Burow
, E.
, Doll
, U.
, Klinner
, J.
, Stockhausen
, G.
, and Willert
, C.
, 2016
, “Development of Laser-Optical Measurement Techniques on the Vortex Tube: Taking PIV to Its Limits
,” Exp. Therm. Fluid. Sci.
, 34
(8
), pp. 1367
–1374
.3.
Manimaran
, R.
, 2017
, “Computational Analysis of Flow Features and Energy Separation in a Counter-Flow Vortex Tube Based on Number of Inlets
,” Energy
, 123
, pp. 564
–578
. 10.1016/j.energy.2017.02.0254.
Nicol
, D.
, and Lane
, M.
, 2005
, “Vortex Tube System and Method for Processing Natural Gas
,” US Patent 6,932,858.5.
Tunkel
, L.
, and Krasovitski
, B.
, 2000
, “Vortex Pilot Gas Heater
,” US Patent 6,082,116.6.
Tunkel
, L.
, Krasovitski
, B.
, and Foster
, R.
, 1996
, “Method of Natural Gas Pressure Reduction on the City Gate Stations
,” US Patent 5,582,012.7.
Wenyuan
, X.
, 2005
, “Small Scale Liquefied Natural gas Production Plant
,” Chem. Eng. Oil Gas
, 34
(3
), pp. 161
–164
.8.
Yun
, J.
, Younghyeon
, K.
, and Sangseok
, Y.
, 2018
, “Feasibility Study of Carbon Dioxide Separation From Gas Mixture by Vortex Tube
,” Int. J. Heat Mass Transfer
, 126
, pp. 353
–361
. 10.1016/j.ijheatmasstransfer.2018.04.1509.
Arslan
, S.
, Mitrovic
, B.
, and Muller
, M.
, 2002
, “Vortex Tube Applications in Micro-Power Generation
,” 2002 International Joint Power Generation Conference
, Scottsdale, AZ
, June 24–26
, American Society of Mechanical Engineers
, pp. 945
–952
.10.
Bakhsheshi
, M.
, Keenliside
, L.
, and Ting-Yim
, L.
, 2016
, “Rapid and Selective Brain Cooling Method Using Vortex Tube: A Feasibility Study
,” Am. J. Emerg. Med.
, 34
(5
), pp. 887
–894
. 10.1016/j.ajem.2016.02.00111.
Bancroft
, M.
, Lawlor
, A.
, Gordon
, E.
, Taylor
, A.
, and Hamill
, W.
, 2017
, “Respirator System With Curved Vortex Tube
,” US Patent Ap. 15/423,894.12.
Baz
, A.
, and Gilheany
, J.
, 1988
, “Vortex Tube–Assisted Environmental Control of Hyperbaric Chambers
,” ASME J. Energy Resour. Technol.
, 110
(4
), pp. 230
–236
. 10.1115/1.323138713.
Crocker
, A.
, White
, S.
, Knowlen
, C.
, and Weimer
, R.
, 2003
, “Experimental Results of a Vortex Tube air Separator for Advanced Space Transportation
,” 39th AIAA/ASME/SAE/ASEE Join Propulsion Conference and Exhibit
, Huntsville, AL
, July 20–23
, p. 4451
.14.
Martin
, R.
, and Zilm
, K.
, 2004
, “Variable Temperature System Using Vortex Tube Cooling and Fiber Optic Temperature Measurement for Low Temperature Magic Angle Spinning NMR
,” J. Magn. Reson.
, 168
(2
), pp. 202
–209
. 10.1016/j.jmr.2004.03.00215.
Bruno
, T.
, 1986
, “Vortex Cooling for Subambient Temperature Gas Chromatography
,” Anal. Chem.
, 58
(7
), pp. 1595
–1596
. 10.1021/ac00298a08016.
Ming-Fei
, C.
, Hsiao
, W.
, Ho
, Y.
, Wei-Lun
, H.
, and Yu-Pin
, C.
, 2008
, “Laser Cutting of GFRM Using Assisted Cooling-Air Generated by Vortex Tube
,” Proceedings of the 8th Asia-Pacific Conference on Materials Processing
, Guilin and Guangzhou, China
, June 15–20
.17.
Devade
, K.
, and Pise
, A.
, 2017
, “Exergy Analysis of a Counter Flow Ranque–Hilsch Vortex Tube for Different Cold Orifice Diameters, L/D Ratios and Exit Valve Angles
,” Heat Mass Transfer
, 53
(6
), pp. 2017
–2029
. 10.1007/s00231-016-1962-718.
Chatterjee
, M.
, Mukhopadhyay
, S.
, and Vijayan
, P.
, 2018
, “Species Separation in Ranque-Hilsch Vortex Tube Using Air as Working Fluid
,” Heat Mass Transfer
, 54
(12
), pp. 3559
–3572
.19.
Ahlborn
, B.
, and Gordon
, J.
, 2000
, “The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle
,” J. Appl. Phys.
, 88
(6
), pp. 3645
–3653
. 10.1063/1.128952420.
Trofimov
, V.
, 2000
, “Physical Effect in Ranque Vortex Tubes
,” J. Exp. Theor. Phys. Lett.
, 72
(5
), pp. 249
–252
. 10.1134/1.132402121.
Kazantseva
, O.
, Piralishvili
, S.
, and Fuzeeva
, A.
, 2005
, “Numerical Simulation of Swirling Flows in Vortex Tubes
,” High Temp.
, 43
(4
), pp. 608
–613
. 10.1007/s10740-005-0102-822.
Deemter
, J.
, 1952
, “On the Theory of the Ranque-Hilsch Cooling Effect
,” Appl. Sci. Res., Sect. A
, 3
(3
), pp. 174
–196
. 10.1007/BF0318492723.
Stephan
, K.
, Lin
, S.
, Durst
, M.
, Huang
, F.
, and Seher
, D.
, 1983
, “An Investigation of Energy Separation in a Vortex Tube
,” Int. J. Heat Mass Transfer
, 26
(3
), pp. 341
–348
. 10.1016/0017-9310(83)90038-824.
Behera
, U.
, Paul
, P.
, Dinesh
, K.
, and Jacob
, S.
, 2008
, “Numerical Investigations on Flow Behaviour and Energy Separation in Ranque–Hilsch Vortex Tube
,” Int. J. Heat Mass Transfer
, 51
(25–26
), pp. 6077
–6089
. 10.1016/j.ijheatmasstransfer.2008.03.02925.
Kurosaka
, M.
, 1982
, “Acoustic Streaming in Swirling Flow and the Ranque—Hilsch (Vortex Tube) Effect
,” J. Fluid Mech.
, 124
, pp. 139
–172
. 10.1017/S002211208200244426.
Rosiński
, M.
, 1993
, “Zamrażanie Wody w Przewodach Ogrzewania za Pomocą Urządzenia Wirowego Ranque’a
,” Inżynieria Sanitarna i Wodna
, 18
, p. 95
.27.
Simoes-Moreira
, J.
, 2010
, “An Air-Standard Cycle and a Thermodynamic Perspective on Operational Limits of Ranque–Hilsh or Vortex Tubes
,” Int. J. Refrig.
, 33
(4
), pp. 765
–773
. 10.1016/j.ijrefrig.2010.01.00528.
Thakare
, H.
, Monde
, A.
, and Parekh
, A.
, 2015
, “Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube: A Review
,” Renewable Sustainable Energy Rev.
, 52
, pp. 1043
–1071
. 10.1016/j.rser.2015.07.19829.
Eiamsa-Ard
, S.
, 2010
, “Experimental Investigation of Energy Separation in a Counterflow Ranque–Hilsch Vortex Tube with Multiple Inlet Snail Entries
,” Int. Commun. Heat Mass Transfer
, 37
(6
), pp. 637
–643
. 10.1016/j.icheatmasstransfer.2010.02.00730.
Eiamsa-ard
, S.
, and Pongjet
, P.
, 2006
, “Numerical Prediction of Vortex Flow and Thermal Separation in a Subsonic Vortex Tube
,” J. Zhejiang Univ., Sci., A
, 7
(8
), pp. 1406
–1415
. 10.1631/jzus.2006.A1406Copyright © 2020 by ASME
You do not currently have access to this content.