Abstract

New temperature limits model of the Ranque–Hilsch vortex tube has been proposed within the presented paper. The model originates from the local compression/expansion and inner friction hypothesis anticipated to be responsible for the Ranque–Hilsch effect. The model in a presented form provides a fair estimation of the temperature limits at each outlet, hence enabling its application on new thermodynamic cycles studies that include vortex tube in the process. The drawback of the proposed model is its simplification by neglecting the impact of kinetic energy on the anticipated temperature values at each outlet.

References

1.
Ranque
,
G.
,
1933
, “
Experiments on Expansion in a Vortex With Simultaneous Exhaust of Hot Air and Cold Air
,”
Le Journal de Physique et Le Radium
,
4
, pp.
112
114
.
2.
Burow
,
E.
,
Doll
,
U.
,
Klinner
,
J.
,
Stockhausen
,
G.
, and
Willert
,
C.
,
2016
, “
Development of Laser-Optical Measurement Techniques on the Vortex Tube: Taking PIV to Its Limits
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1367
1374
.
3.
Manimaran
,
R.
,
2017
, “
Computational Analysis of Flow Features and Energy Separation in a Counter-Flow Vortex Tube Based on Number of Inlets
,”
Energy
,
123
, pp.
564
578
. 10.1016/j.energy.2017.02.025
4.
Nicol
,
D.
, and
Lane
,
M.
,
2005
, “
Vortex Tube System and Method for Processing Natural Gas
,” US Patent 6,932,858.
5.
Tunkel
,
L.
, and
Krasovitski
,
B.
,
2000
, “
Vortex Pilot Gas Heater
,” US Patent 6,082,116.
6.
Tunkel
,
L.
,
Krasovitski
,
B.
, and
Foster
,
R.
,
1996
, “
Method of Natural Gas Pressure Reduction on the City Gate Stations
,” US Patent 5,582,012.
7.
Wenyuan
,
X.
,
2005
, “
Small Scale Liquefied Natural gas Production Plant
,”
Chem. Eng. Oil Gas
,
34
(
3
), pp.
161
164
.
8.
Yun
,
J.
,
Younghyeon
,
K.
, and
Sangseok
,
Y.
,
2018
, “
Feasibility Study of Carbon Dioxide Separation From Gas Mixture by Vortex Tube
,”
Int. J. Heat Mass Transfer
,
126
, pp.
353
361
. 10.1016/j.ijheatmasstransfer.2018.04.150
9.
Arslan
,
S.
,
Mitrovic
,
B.
, and
Muller
,
M.
,
2002
, “
Vortex Tube Applications in Micro-Power Generation
,”
2002 International Joint Power Generation Conference
,
Scottsdale, AZ
,
June 24–26
,
American Society of Mechanical Engineers
, pp.
945
952
.
10.
Bakhsheshi
,
M.
,
Keenliside
,
L.
, and
Ting-Yim
,
L.
,
2016
, “
Rapid and Selective Brain Cooling Method Using Vortex Tube: A Feasibility Study
,”
Am. J. Emerg. Med.
,
34
(
5
), pp.
887
894
. 10.1016/j.ajem.2016.02.001
11.
Bancroft
,
M.
,
Lawlor
,
A.
,
Gordon
,
E.
,
Taylor
,
A.
, and
Hamill
,
W.
,
2017
, “
Respirator System With Curved Vortex Tube
,” US Patent Ap. 15/423,894.
12.
Baz
,
A.
, and
Gilheany
,
J.
,
1988
, “
Vortex Tube–Assisted Environmental Control of Hyperbaric Chambers
,”
ASME J. Energy Resour. Technol.
,
110
(
4
), pp.
230
236
. 10.1115/1.3231387
13.
Crocker
,
A.
,
White
,
S.
,
Knowlen
,
C.
, and
Weimer
,
R.
,
2003
, “
Experimental Results of a Vortex Tube air Separator for Advanced Space Transportation
,”
39th AIAA/ASME/SAE/ASEE Join Propulsion Conference and Exhibit
,
Huntsville, AL
,
July 20–23
, p.
4451
.
14.
Martin
,
R.
, and
Zilm
,
K.
,
2004
, “
Variable Temperature System Using Vortex Tube Cooling and Fiber Optic Temperature Measurement for Low Temperature Magic Angle Spinning NMR
,”
J. Magn. Reson.
,
168
(
2
), pp.
202
209
. 10.1016/j.jmr.2004.03.002
15.
Bruno
,
T.
,
1986
, “
Vortex Cooling for Subambient Temperature Gas Chromatography
,”
Anal. Chem.
,
58
(
7
), pp.
1595
1596
. 10.1021/ac00298a080
16.
Ming-Fei
,
C.
,
Hsiao
,
W.
,
Ho
,
Y.
,
Wei-Lun
,
H.
, and
Yu-Pin
,
C.
,
2008
, “
Laser Cutting of GFRM Using Assisted Cooling-Air Generated by Vortex Tube
,”
Proceedings of the 8th Asia-Pacific Conference on Materials Processing
,
Guilin and Guangzhou, China
,
June 15–20
.
17.
Devade
,
K.
, and
Pise
,
A.
,
2017
, “
Exergy Analysis of a Counter Flow Ranque–Hilsch Vortex Tube for Different Cold Orifice Diameters, L/D Ratios and Exit Valve Angles
,”
Heat Mass Transfer
,
53
(
6
), pp.
2017
2029
. 10.1007/s00231-016-1962-7
18.
Chatterjee
,
M.
,
Mukhopadhyay
,
S.
, and
Vijayan
,
P.
,
2018
, “
Species Separation in Ranque-Hilsch Vortex Tube Using Air as Working Fluid
,”
Heat Mass Transfer
,
54
(
12
), pp.
3559
3572
.
19.
Ahlborn
,
B.
, and
Gordon
,
J.
,
2000
, “
The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle
,”
J. Appl. Phys.
,
88
(
6
), pp.
3645
3653
. 10.1063/1.1289524
20.
Trofimov
,
V.
,
2000
, “
Physical Effect in Ranque Vortex Tubes
,”
J. Exp. Theor. Phys. Lett.
,
72
(
5
), pp.
249
252
. 10.1134/1.1324021
21.
Kazantseva
,
O.
,
Piralishvili
,
S.
, and
Fuzeeva
,
A.
,
2005
, “
Numerical Simulation of Swirling Flows in Vortex Tubes
,”
High Temp.
,
43
(
4
), pp.
608
613
. 10.1007/s10740-005-0102-8
22.
Deemter
,
J.
,
1952
, “
On the Theory of the Ranque-Hilsch Cooling Effect
,”
Appl. Sci. Res., Sect. A
,
3
(
3
), pp.
174
196
. 10.1007/BF03184927
23.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Huang
,
F.
, and
Seher
,
D.
,
1983
, “
An Investigation of Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
341
348
. 10.1016/0017-9310(83)90038-8
24.
Behera
,
U.
,
Paul
,
P.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2008
, “
Numerical Investigations on Flow Behaviour and Energy Separation in Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6077
6089
. 10.1016/j.ijheatmasstransfer.2008.03.029
25.
Kurosaka
,
M.
,
1982
, “
Acoustic Streaming in Swirling Flow and the Ranque—Hilsch (Vortex Tube) Effect
,”
J. Fluid Mech.
,
124
, pp.
139
172
. 10.1017/S0022112082002444
26.
Rosiński
,
M.
,
1993
, “
Zamrażanie Wody w Przewodach Ogrzewania za Pomocą Urządzenia Wirowego Ranque’a
,”
Inżynieria Sanitarna i Wodna
,
18
, p.
95
.
27.
Simoes-Moreira
,
J.
,
2010
, “
An Air-Standard Cycle and a Thermodynamic Perspective on Operational Limits of Ranque–Hilsh or Vortex Tubes
,”
Int. J. Refrig.
,
33
(
4
), pp.
765
773
. 10.1016/j.ijrefrig.2010.01.005
28.
Thakare
,
H.
,
Monde
,
A.
, and
Parekh
,
A.
,
2015
, “
Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube: A Review
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1043
1071
. 10.1016/j.rser.2015.07.198
29.
Eiamsa-Ard
,
S.
,
2010
, “
Experimental Investigation of Energy Separation in a Counterflow Ranque–Hilsch Vortex Tube with Multiple Inlet Snail Entries
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
637
643
. 10.1016/j.icheatmasstransfer.2010.02.007
30.
Eiamsa-ard
,
S.
, and
Pongjet
,
P.
,
2006
, “
Numerical Prediction of Vortex Flow and Thermal Separation in a Subsonic Vortex Tube
,”
J. Zhejiang Univ., Sci., A
,
7
(
8
), pp.
1406
1415
. 10.1631/jzus.2006.A1406
You do not currently have access to this content.