Abstract

In this work, we investigate the effects of the width of an annular baffle region on natural convection heat transfer to an immersed, coiled heat exchanger in an otherwise quiescent sensible hot water storage tank. In the experiments, the coiled heat exchanger sits in an annular region created by the tank wall and a straight, cylindrical baffle. The width of this baffle region is 1.5, 2, 3, or 4 times the heat exchanger diameter. These experiments are compared to each other and to corresponding control experiments with no baffle. In general, all baffles create considerable benefits over their respective control experiments, consistent with past studies. The considered metrics of heat transfer rate, fraction of energy discharged from the tank, heat exchanger outlet temperature, and heat exchanger effectiveness show that heat transfer is improved slightly by narrowing the baffle region. For example, relative to their respective controls, the energy extracted from the tank after 30 min of discharge in the 1.5D, 2D, 3D, and 4D experiments is 23.3%, 20.8%, 18.1%, and 14.6% higher, respectively. This improvement in natural convection heat transfer as the baffle region narrows is attributed to the increasing thermal stratification observed with increasingly narrow baffle regions.

References

1.
Pachauri
,
R.
,
Meyer
,
L.
, and
Core Writing Team, eds.
,
2014
, “
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,”
Technical Report
,
IPCC
,
Geneva, Switzerland
.
2.
Drück
,
H.
, and
Bachmann
,
S.
,
2002
, “
Hot Water Performance of Solar Combistores–Description of a Test Method and the Experience Gained With the Application of the Method on Three Different Types of Combistores
,”
Technical Report
,
International Energy Agency SHC Task 26, Combisystems
, pp.
47
54
.
3.
Drück
,
H.
,
2002
, “
Influence of Different Combistore Concepts on the Overall System Performance
,”
International Energy Agency SHC Task 26, Industry Workshop
,
Oslo, Norway
,
Apr. 8
, pp.
39
46
.
4.
Drück
,
H.
, and
Hahne
,
E.
,
1998
, “
Test and Comparison of Hot Water Stores for Solar Combistores
,”
Proceedings of EuroSun 1998
,
Portoroz, Slovenia
,
Sept. 14–17
, pp.
14
17
.
5.
Li
,
S.
,
Zhang
,
Y.
,
Zhang
,
K.
,
Li
,
X.
,
Li
,
Y.
, and
Zhang
,
X.
,
2014
, “
Study on Performance of Storage Tanks in Solar Water Heater System in Charge and Discharge Progress
,”
Energy Procedia
,
48
, pp.
384
393
. 10.1016/j.egypro.2014.02.045
6.
Haltiwanger
,
J. F.
, and
Davidson
,
J. H.
,
2009
, “
Discharge of a Thermal Storage Tank Using An Immersed Heat Exchanger with An Annual Baffle
,”
Sol. Energy
,
83
(
2
), pp.
193
201
. 10.1016/j.solener.2008.07.017
7.
Nicodemus
,
J. H.
,
Jeffrey
,
J.
,
Haase
,
J.
, and
Bedding
,
D.
,
2017
, “
Effect of Baffle and Shroud Designs on Discharge of a Thermal Storage Tank Using An Immersed Heat Exchanger
,”
Sol. Energy
,
157
, pp.
911
919
. 10.1016/j.solener.2017.09.008
8.
Logie
,
W. R.
, and
Frank
,
E.
,
2013
, “
A Transient Immersed Coil Heat Exchanger Model
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041006
. 10.1115/1.4023928
9.
Nicodemus
,
J. H.
,
Smith
,
J. H.
, and
Goldstein
,
H.
,
2019
, “
Numerical Simulations of Storage-Side Natural Convection to An Immersed Coiled Heat Exchanger With Baffle-Shrouds
,”
Sol. Energy
,
182
, pp.
304
315
. 10.1016/j.solener.2019.01.069
10.
Mote
,
R.
,
Probert
,
S. D.
, and
Nevrala
,
D.
,
1992
, “
Rate of Heat Recovery From a Hot-Water Store: Influence of the Aspect Ratio of a Vertical-Axis Open-Ended Cylinder Beneath a Submerged Heat-Exchanger
,”
Appl. Energy
,
41
(
2
), pp.
115
136
. 10.1016/0306-2619(92)90040-I
11.
Chauvet
,
L. P.
,
Nevrala
,
D. J.
, and
Probert
,
S. D.
,
1993
, “
Influences of Baffles on the Rate of Heat Recovery Via a Finned-Tubed Heat-Exchanger Immersed in a Hot-Water Store
,”
Appl. Energy
,
45
(
3
), pp.
191
217
. 10.1016/0306-2619(93)90032-K
12.
Su
,
Y.
, and
Davidson
,
J. H.
,
2008
, “
Discharge of Thermal Storage Tanks Via Immersed Baffled Heat Exchangers: Numerical Model of Flow and Temperature Fields
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021016
. 10.1115/1.2856012
13.
Boetcher
,
S. K. S.
,
Kulacki
,
F. A.
, and
Davidson
,
J. H.
,
2010
, “
Negatively Buoyant Plume Flow in a Baffled Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
034502
. 10.1115/1.4001471
14.
Boetcher
,
S. K. S.
,
Kulacki
,
F. A.
, and
Davidson
,
J. H.
,
2012
, “
Use of a Shroud and Baffle to Improve Natural Convection to Immersed Heat Exchanger
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011010
. 10.1115/1.4005089
15.
Zemler
,
M. K.
, and
Boetcher
,
S. K. S.
,
2014
, “
Investigation of Shroud Geometry to Passively Improve Heat Transfer in a Solar Thermal Storage Tank
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011017
. 10.1115/1.4025708
16.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
, pp.
199
264
.
17.
Hilpert
,
R.
,
1933
, “
Heat Transfer From Cylinders
,”
Forsch. Geb. Ingenieurwes
,
4
(
5
), p.
215
. 10.1007/BF02719754
18.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
, 6th ed.,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
19.
Kulacki
,
F. A.
,
Davidson
,
J. H.
, and
Hebert
,
M.
,
2007
, “
On the Effectiveness of Baffles in Indirect Solar Storage Systems
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
494
498
. 10.1115/1.2770757
You do not currently have access to this content.