Abstract

In this study, a single-cylinder research engine was used to investigate the comparative combustion, performance, and emissions characteristics of the engine in a premixed charge compression ignition (PCCI) mode combustion vis-a-vis baseline compression ignition (CI) mode combustion using three test fuels, namely, B20 (20% v/v biodiesel blended with mineral diesel), B40 (40% v/v biodiesel blended with mineral diesel), and mineral diesel. For both combustion modes, experiments were performed at constant fuel injection pressure (FIP, 700 bar), engine speed (1500 rpm), and fuel energy input (0.7 kg/h diesel equivalent). PCCI mode combustion experiments were performed at four different start of main injection (SoMI) timings using two different pilot fuel injection strategies, namely, single pilot injection (SPI, 35 deg before top dead center (bTDC)) and double pilot injection (DPI, 35 deg, and 45 deg bTDC). Results showed that advancing SoMI timing for both CI and PCCI combustion modes resulted in knocking; however, the DPI strategy resulted in relatively lesser knocking compared with the SPI strategy. The performance of PCCI mode combustion was relatively inferior compared with baseline CI mode combustion; however, biodiesel blends slightly improved the performance of PCCI mode combustion. Overall, this study shows that the PCCI mode combustion operating load range can be improved by using the DPI strategy.

References

1.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
,
Dhar
,
A.
, and
Srivastava
,
D. K.
,
2018
, “
Combustion Characteristics of a Common Rail Direct Injection Engine Using Different Fuel Injection Strategies
,”
Int. J. Therm. Sci.
,
134
, pp.
475
484
. 10.1016/j.ijthermalsci.2018.07.001
2.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
,
Sasaki
,
S.
, and
Dean
,
A. M.
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
.
SAE Technical Paper 2001; 2001-01-0655
.
3.
Singh
,
A. P.
, and
Agarwal
,
A. K.
Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine
.
SAE Technical Paper 2016; 2016-28-0257
.
4.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol. Trans
,
140
(
9
), p.
092201
. 10.1115/1.4039761
5.
Hwang
,
J. T.
,
Nord
,
A. J.
, and
Northrop
,
W. F.
,
2017
, “
Efficacy of Add-On Hydrous Ethanol Dual Fuel Systems to Reduce NOx Emissions From Diesel Engines
,”
ASME J. Energy Resour. Technol. Trans.
,
139
(
4
), p.
042206
. 10.1115/1.4036252
6.
Gelso
,
E. R.
, and
Dahl
,
J.
,
2017
, “
Diesel Engine Control With Exhaust Aftertreatment Constraints
,”
IFAC-Papers OnLine
,
50
(
1
), pp.
8921
8926
. 10.1016/j.ifacol.2017.08.1293
7.
Yang
,
L.
,
Sukumar
,
B.
,
Naseri
,
M.
,
Markatou
,
P.
, and
Chatterjee
,
S.
,
After-Treatment Systems to Meet China NS VI, India BS VI Regulation Limits
.
SAE Technical Paper 2017; 2017-01-0941, 2017
.
8.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
10
), p.
102203
. 10.1115/1.4043390
9.
Yadav
,
J.
, and
Ramesh
,
A.
,
2018
, “
Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
7
), p.
072206
. 10.1115/1.4039546
10.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Do
,
J. P.
, and
Kato
,
S.
,
1979
,
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
.
SAE Technical Paper, 790501
.
11.
Stanglmaier
,
R. H.
, and
Roberts
,
C. E.
,
1999
,
Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications
.
SAE Technical Paper; 1999-01-3682
.
12.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2012
, “
Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique
,”
Appl. Energy
,
99
, pp.
116
125
. 10.1016/j.apenergy.2012.03.060
13.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
. 10.1016/j.pecs.2017.02.001
14.
Agarwal
,
A. K.
,
Agarwal
,
A.
, and
Singh
,
A. P.
,
2015
, “
Time Resolved in-situ Biodiesel Combustion Visualization Using Engine Endoscopy
,”
Measurement
,
69
, pp.
236
249
. 10.1016/j.measurement.2015.03.008
15.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Book Company
,
New York
.
16.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol. Trans.
,
142
(
8
), p.
082303
.
17.
Agarwal
,
A. K.
,
Park
,
S.
,
Dhar
,
A.
,
Lee
,
C. S.
,
Park
,
S.
,
Gupta
,
T.
, and
Gupta
,
N. K.
,
2018
, “
Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
12
), p.
120801
. 10.1115/1.4040584
18.
Zhang
,
Y.
,
Voice
,
A.
,
Pei
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2018
, “
A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
10
), p.
102202
. 10.1115/1.4040346
19.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol. Trans.
,
142
(
8
), p.
082305
. 10.1115/1.4046225
20.
Agarwal
,
A. K.
,
Gadekar
,
S.
, and
Singh
,
A. P.
,
2018
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
1
), p.
012207
. 10.1115/1.4037686
21.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2016
, “
Diesoline, Diesohol, and Diesosene Fuelled HCCI Engine Development
,”
ASME J. Energy Resour. Technol. Trans.
,
138
, p.
052212
. 10.1115/1.4033536
22.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Fuel Injection Parameters on Combustion Stability and Emissions of a Mineral Diesel Fueled Partially Premixed Charge Compression Ignition (PCCI) Engine
,”
Appl. Energy
,
190
, pp.
658
669
. 10.1016/j.apenergy.2016.12.164
23.
Walker
,
R. N.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol. Trans.
,
137
(
4
), p.
042202
. 10.1115/1.4030630
24.
Murugesa
,
P. M.
, and
Anand
,
K.
,
2018
, “
Comparison of Different Low Temperature Combustion Strategies in a Light Duty Air Cooled Diesel Engine
,”
Appl. Thermal Eng.
,
142
, pp.
380
390
. 10.1016/j.applthermaleng.2018.07.047
25.
Shim
,
E.
,
Park
,
H.
, and
Bae
,
C.
,
2020
, “
Comparisons of Advanced Combustion Technologies (HCCI,” PCCI, and Dual-Fuel PCCI) on Engine Performance and Emission Characteristics in a Heavy-Duty Diesel Engine
. Fuel
,
262
, p.
116436
. 10.1016/j.fuel.2019.116436
26.
Horibe
,
N.
,
Harada
,
S.
,
Ishiyama
,
T.
, and
Shioji
,
M.
,
2009
, “
Improvement of Premixed Charge Compression Ignition-Based Combustion by Two-Stage Injection
,”
Int. J. Engine Res.
,
10
(
2
), pp.
71
80
. 10.1243/14680874JER02709
27.
Lee
,
Y.
,
Jang
,
K.
,
Han
,
K.
,
Huh
,
K. Y.
, and
Oh
,
S.
Simulation of a Heavy Duty Diesel Engine Fueled With Soybean Biodiesel Blends in Low Temperature Combustion
.
SAE Technical Paper 2013; 2013-01-1100
.
28.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol. Trans.
,
140
(
10
), p.
102201
. 10.1115/1.4039745
29.
McCrady
,
J. P.
,
Stringer
,
V. L.
,
Hansen
,
A. C.
, and
Lee
,
C. F.
Computational Analysis of Biodiesel Combustion in a Low-Temperature Combustion Engine Using Well Defined Fuel Properties
.
SAE Technical Paper 2007; 2007-01-0617
.
30.
Gharehghani
,
A.
,
2019
, “
Load Limits of an HCCI Engine Fueled With Natural Gas, Ethanol, and Methanol
,”
Fuel
,
239
, pp.
1001
1014
. 10.1016/j.fuel.2018.11.066
31.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol. Trans.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
32.
Cican
,
G.
,
Plesu
,
V.
,
Deacanu
,
M.
,
Toma
,
A.
, and
Cretu
,
M.
,
2019
, “
Performances and Emissions Evaluation of a Microturbojet Engine Running on Biodiesel Blends
,”
ASME J. Energy Resour. Technol. Trans.
,
141
(
7
), p.
072003
. 10.1115/1.4043676
33.
Collin
,
R.
,
Nygren
,
J.
,
Richter
,
M.
, and
Alden
,
M.
Simultaneous OH- and Formaldehyde-LIF Measurements in an HCCI Engine
.
SAE Technical Paper 2003; 2003-01-3218
.
34.
Zehani
,
A.
, and
Saray
,
R. K.
,
2018
, “
Comparison of Late PCCI Combustion, Performance and Emissions of Diesel Engine for B20 and B100 Fuels by KIVA-CHEMKIN Coupling
,”
Renew. Energy
,
122
, pp.
118
130
. 10.1016/j.renene.2018.01.046
35.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
, and
Agarwal
,
A. K.
,
2020
, “
Experimental Investigations of Mineral Diesel/Methanol-Fueled Reactivity Controlled Compression Ignition Engine Operated at Variable Engine Loads and Premixed Ratios
,”
Int. J. Engine Res.
36.
Singh
,
A. P.
,
Jain
,
A.
, and
Agarwal
,
A. K.
,
2017
, “
Fuel-Injection Strategy for PCCI Engine Fueled by Mineral Diesel and Biodiesel Blends
,”
Energy Fuels
,
31
(
8
), pp.
8594
8607
. 10.1021/acs.energyfuels.6b03393
37.
Rassweiler
,
G.
, and
Withrow
,
L.
Motion Pictures of Engine Flames Correlated With Pressure Cars
.
SAE Technical Paper 1938; 380139
.
38.
Cohn
,
D.
, and
Bromberg
,
L.
Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines
.
SAE Technical Paper 2018; 2018-01-0888
.
39.
Yousefi
,
A.
, and
Birouk
,
M.
,
2017
, “
An Investigation of Multi-Injection Strategies for a Dual-Fuel Pilot Diesel Ignition Engine at Low Load
,”
ASME J. Energy Resour. Technol. Trans.
,
139
(
1
), p.
012201
. 10.1115/1.4033707
40.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Split Fuel Injection and EGR on NOx and PM Emission Reduction in a Low Temperature Combustion (LTC) Mode Diesel Engine
,”
Energy
,
122
, pp.
249
264
. 10.1016/j.energy.2017.01.050
41.
Indian Standard IS: 14273
,
Automotive Vehicles—Exhaust Emissions—Gaseous Pollutants From Vehicles Fitted With Compression Ignition Engines–Method of Measurement, 1999
,
Bureau of Indian Standards
,
New Delhi, India
.
You do not currently have access to this content.