Abstract

Reactivity controlled compression ignition (RCCI) mode combustion has attracted significant attention because of its superior engine performance and significantly lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) compared with conventional compression ignition (CI) mode combustion engines. In this experimental study, effects of fuel injection pressure (FIP) of high reactivity fuel (HRF) and premixed ratio of low reactivity fuel (LRF) were evaluated on a diesel-methanol fueled RCCI mode combustion engine. Experiments were performed in a single cylinder research engine at a constant engine speed (1500 rpm) and constant engine load (3 bar BMEP) using three different FIPs (500, 750, and 1000 bar) of mineral diesel and four different premixed ratios (rp = 0, 0.25, 0.50, and 0.75) of methanol. Results showed that RCCI mode resulted in more stable combustion compared with baseline CI mode combustion. Increasing FIP resulted in relatively higher knocking, but it reduced with increasing premixed ratio. Relatively higher brake thermal efficiency (BTE) of RCCI mode combustion compared with baseline CI mode combustion is an important finding of this study. BTE increased with increasing FIP of mineral diesel and increasing premixed ratio of methanol. Relatively dominant effect of increasing FIP on BTE at higher premixed ratios of methanol was also an important finding of this study. RCCI mode combustion resulted in higher carbon monoxide (CO) and hydrocarbon (HC) emissions, but lower PM and NOx emissions compared with baseline CI mode combustion. Increasing FIP of HRF at lower premixed ratios reduced the number concentration of particles; however, effect of FIP became less dominant at higher premixed ratios. Relatively higher number emissions of nanoparticles at higher FIPs were observed. Statistical and qualitative correlations exhibited the importance of suitable FIP at different premixed ratios of LRF on emission characteristics of RCCI mode combustion engine.

References

1.
Statistical Year Book India 2017. Report issues by Ministry of Statistics & Programme Implementation
. http://www.mospi.nic.in/statistical-year-book-india/2017/189, Accessed March 24, 2020.
2.
Agarwal
,
A. K.
,
Ateeq
,
B.
,
Gupta
,
T.
,
Singh
,
A. P.
,
Pandey
,
S. K.
,
Sharma
,
N.
,
Agarwal
,
R. A.
,
Gupta
,
N. K.
,
Sharma
,
H.
,
Jain
,
A.
, and
Shukla
,
P. C.
,
2018
, “
Toxicity and Mutagenicity of Exhaust From Compressed Natural Gas: Could This be a Clean Solution for Megacities With Mixed-Traffic Conditions?
,”
Environ. Pollut.
,
239
, pp.
499
511
. 10.1016/j.envpol.2018.04.028
3.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Gupta
,
T.
,
Agarwal
,
R. A.
,
Sharma
,
N.
,
Rajput
,
P.
,
Pandey
,
S. K.
, and
Ateeq
,
B.
,
2018
, “
Mutagenicity and Cytotoxicity of Particulate Matter Emitted From Biodiesel-Fueled Engines
,”
Environ. Sci. Technol.
,
52
(
24
), pp.
14496
14507
. 10.1021/acs.est.8b03345
4.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Experimental Evaluation of Sensitivity of Low-Temperature Combustion to Intake Charge Temperature and Fuel Properties
,”
Int. J. Engine Res.
,
19
(
7
), pp.
732
757
. 10.1177/1468087417730215
5.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2012
, “
Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique
,”
Appl. Energy
,
99
, pp.
116
125
. 10.1016/j.apenergy.2012.03.060
6.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
. 10.1016/j.pecs.2017.02.001
7.
Jain
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of Fuel Injection Parameters on Combustion Stability and Emissions of a Mineral Diesel Fueled Partially Premixed Charge Compression Ignition (PCCI) Engine
,”
Appl. Energy
,
190
, pp.
658
669
. 10.1016/j.apenergy.2016.12.164
8.
Lee
,
J.
,
Chu
,
S.
,
Cha
,
J.
,
Choi
,
H.
, and
Min
,
K.
,
2015
, “
Effect of the Diesel Injection Strategy on the Combustion and Emissions of Propane/Diesel Dual Fuel Premixed Charge Compression Ignition Engines
,”
Energy
,
93
(
1
), pp.
1041
1052
. 10.1016/j.energy.2015.09.032
9.
Shim
,
E.
,
Park
,
H.
, and
Bae
,
C.
,
2020
, “
Comparisons of Advanced Combustion Technologies (HCCI, PCCI, and Dual-Fuel PCCI) on Engine Performance and Emission Characteristics in a Heavy-Duty Diesel Engine
,”
Fuel
,
262
, p.
116436
. 10.1016/j.fuel.2019.116436
10.
Pan
,
S.
,
Liu
,
X.
,
Cai
,
K.
,
Li
,
X.
,
Han
,
W.
, and
Li
,
B.
,
2010
, “
Experimental Study on Combustion and Emission Characteristics of Iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine Under Low Loads
,”
Fuel
,
261
, p.
116434
. 10.1016/j.fuel.2019.116434
11.
Hanson
,
R.
,
Salvi
,
A.
,
Redon
,
F.
, and
Regner
,
G.
,
2019
, “
Experimental Comparison of Gasoline Compression Ignition and Diesel Combustion in a Medium-Duty Opposed-Piston Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122201
. 10.1115/1.4043825
12.
Putrasari
,
Y.
,
Jwa
,
K.
, and
Lim
,
O.
,
2019
, “
Influence of EGR and Intake Boost on GCI Engine Fueled With Gasoline-Biodiesel Blend Using Early Single Injection Mode
,”
Energy Proc.
,
158
, pp.
565
570
. 10.1016/j.egypro.2019.01.153
13.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
. 10.1016/j.pecs.2014.05.003
14.
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Fuel Reactivity Effects on the Efficiency and Operational Window of Dual-Fuel Compression Ignition Engines
,”
Fuel
,
118
, pp.
163
175
. 10.1016/j.fuel.2013.10.045
15.
Benajes
,
J.
,
Molina
,
S.
,
García
,
A.
,
Belarte
,
E.
, and
Vanvolsem
,
M.
,
2014
, “
An Investigation on RCCI Combustion in a Heavy Duty Diesel Engine Using In-Cylinder Blending of Diesel and Gasoline Fuels
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
66
76
. 10.1016/j.applthermaleng.2013.10.052
16.
Li
,
J.
,
Yang
,
W. M.
,
An
,
H.
,
Zhou
,
D. Z.
,
Yu
,
W. B.
,
Wang
,
J. X.
, and
Li
,
L.
,
2015
, “
Numerical Investigation on the Effect of Reactivity Gradient in an RCCI Engine Fueled With Gasoline and Diesel
,”
Energy Convers. Manage.
,
92
, pp.
342
352
. 10.1016/j.enconman.2014.12.071
17.
Yang
,
B.
,
Yao
,
M.
,
Cheng
,
W. K.
,
Li
,
Y.
,
Zheng
,
Z.
, and
Li
,
S.
,
2014
, “
Experimental and Numerical Study on Different Dual-Fuel Combustion Modes Fuelled With Gasoline and Diesel
,”
Appl. Energy
,
113
, pp.
722
733
. 10.1016/j.apenergy.2013.07.034
18.
Curran
,
S.
,
Hanson
,
R.
,
Wagner
,
R.
, and
Reitz
,
R. D.
,
2013
,
Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine
, SAE Technical Paper 2013-01-0289.
19.
Poorghasemi
,
K.
,
Saray
,
R. K.
,
Ansari
,
E.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J. D.
,
2017
, “
Effect of Diesel Injection Strategies on Natural Gas/Diesel RCCI Combustion Characteristics in a Light Duty Diesel Engine
,”
Appl. Energy
,
199
, pp.
430
446
. 10.1016/j.apenergy.2017.05.011
20.
Lee
,
J.
,
Choi
,
S.
, and
Kim
,
H.
,
2013
, “
Reduction of Emissions With Propane Addition to a Diesel Engine
,”
Int. J. Autom. Technol.
,
14
(
4
), pp.
551
558
. 10.1007/s12239-013-0059-2
21.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol-Dodecanol-Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
. 10.1115/1.4043390
22.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
. 10.1115/1.4046225
23.
Li
,
Z.
,
Wang
,
Y.
,
Geng
,
H.
,
Zhen
,
X.
,
Liu
,
M.
,
Xu
,
S.
, and
Li
,
C.
,
2020
, “
Investigation of Injection Strategy for a Diesel Engine With Directly Injected Methanol and Pilot Diesel at Medium Load
,”
Fuel
,
266
, p.
116958
. 10.1016/j.fuel.2019.116958
24.
Chen
,
C.
,
Yao
,
A.
,
Yao
,
C.
,
Wang
,
B.
,
Lu
,
H.
,
Feng
,
J.
, and
Feng
,
L.
,
2019
, “
Study of the Characteristics of PM and the Correlation of Soot and Smoke Opacity on the Diesel Methanol Dual Fuel Engine
,”
Appl. Therm. Eng.
,
148
, pp.
391
403
. 10.1016/j.applthermaleng.2018.11.062
25.
Liu
,
J.
,
Yao
,
A.
, and
Yao
,
C.
,
2014
, “
Effects of Injection Timing on Performance and Emissions of a HD Diesel Engine with DMCC
,”
Fuel
,
134
, pp.
107
113
. 10.1016/j.fuel.2014.05.075
26.
Li
,
Y.
,
Jia
,
M.
,
Chang
,
Y.
, and
Xu
,
G.
,
2017
,
Comparing the Exergy Destruction of Methanol and Gasoline in Reactivity Controlled Compression Ignition (RCCI) Engine
, SAE Technical Paper 2017-01-0758.
27.
Zhou
,
D.
,
Yang
,
W.
,
An
,
H.
, and
Li
,
J.
,
2015
, “
Application of CFD-Chemical Kinetics Approach in Detecting RCCI Engine Knocking Fuelled With Biodiesel/Methanol
,”
Appl. Energy
,
145
, pp.
255
264
. 10.1016/j.apenergy.2015.02.058
28.
Zhou
,
D.
,
Yang
,
W.
,
An
,
H.
,
Li
,
J.
, and
Shu
,
C.
,
2015
, “
A Numerical Study on RCCI Engine Fueled by Biodiesel/Methanol
,”
Energy Convers. Manage.
,
89
, pp.
798
807
. 10.1016/j.enconman.2014.10.054
29.
Dempsey
,
A. B.
,
Walker
,
N. R.
, and
Reitz
,
R. D.
,
2013
, “
Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated With Gasoline/Diesel and Methanol/Diesel
,”
SAE Int. J. Engines
,
6
(
1
), pp.
78
100
. 10.4271/2013-01-0264
30.
Pohlkamp
,
K.
, and
Reitz
,
R. D.
,
2012
,
Reactivity Controlled Compression Ignition (RCCI) in a Single-Cylinder Air-Cooled HSDI Diesel Engine
, SAE Technical Paper 2012-32-0074.
31.
Hariprasad
,
T.
,
2013
,
Effect of Injection Pressure on Performance of Dual Fuel Diesel Engine
, SAE Technical Paper 2013-01-2887.
32.
Walker
,
N.
,
Dempsey
,
A.
,
Andrie
,
M.
, and
Reitz
,
R. D.
,
2013
, “
Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1222
1237
. 10.4271/2013-01-1605
33.
Roy
,
M. M.
,
Tomita
,
E.
,
Kawahara
,
N.
,
Harada
,
Y.
, and
Sakane
,
A.
,
2009
,
Effect of Fuel Injection Parameters on Engine Performance and Emissions of a Supercharged Producer Gas-Diesel Dual Fuel Engine
, SAE Technical Paper 2009-01-1848.
34.
Sayin
,
C.
,
Ilhan
,
M.
,
Canakci
,
M.
, and
Gumus
,
M.
,
2009
, “
Effect of Injection Timing on the Exhaust Emissions of a Diesel Engine Using Diesel–Methanol Blends
,”
Renewable Energy
,
34
(
5
), pp.
1261
1269
. 10.1016/j.renene.2008.10.010
35.
Mobasheri
,
R.
, and
Seddiq
,
M.
,
2018
,
Effects of Diesel Injection Parameters in a Heavy Duty Iso-Butanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine
, SAE Technical Paper 2018-01-0197.
36.
Liu
,
J.
,
Yao
,
A.
, and
Yao
,
C.
,
2015
, “
Effects of Diesel Injection Pressure on the Performance and Emissions of a HD Common-Rail Diesel Engine Fueled With Diesel/Methanol Dual Fuel
,”
Fuel
,
140
, pp.
192
200
. 10.1016/j.fuel.2014.09.109
37.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
. 10.1115/1.4039745
38.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2017
, “
Partially Homogenous Charge Compression Ignition Engine Development for Low Volatility Fuels
,”
Energy Fuels
,
31
(
3
), pp.
3164
3181
. 10.1021/acs.energyfuels.6b02832
39.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Biodiesel Spray Characteristics and Their Effect on Engine Combustion and Particulate Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082303
. 10.1115/1.4045923
40.
Singh
,
A. P.
,
Pal
,
A.
,
Gupta
,
N. K.
, and
Agarwal
,
A. K.
,
2017
, “
Particulate Emissions From Laser Ignited and Spark Ignited Hydrogen Fueled Engines
,”
Int. J. Hydrogen Energy
,
42
(
24
), pp.
15956
15965
. 10.1016/j.ijhydene.2017.04.031
41.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Book Company
,
New York
.
42.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
,
Dhar
,
A.
, and
Srivastava
,
D. K.
,
2018
, “
Combustion Characteristics of a Common Rail Direct Injection Engine Using Different Fuel Injection Strategies
,”
Int. J. Therm. Sci.
,
134
, pp.
475
484
. 10.1016/j.ijthermalsci.2018.07.001
43.
Rassweiler
,
G.
, and
Withrow
,
L.
,
1938
,
Motion Pictures of Engine Flames Correlated With Pressure Cars
, SAE Technical Paper 380139.
44.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Agarwal
,
A.
,
Jeon
,
J.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Spatial Combustion Analysis of Biodiesel Fueled Engine Using Combustion Chamber Endoscopy and Modeling
,”
Renewable Energy
,
98
, pp.
292
303
. 10.1016/j.renene.2016.02.005
45.
Engine Exhaust Particle Sizer Spectrometer Model 3090. Operation and Service Manual, TSI
,
March
2009
.
46.
Shukla
,
P. C.
,
Gupta
,
T.
,
Gupta
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
A Qualitative Correlation Between Engine Exhaust Particulate Number and Mass Emissions
,”
Fuel
,
202
, pp.
241
245
. 10.1016/j.fuel.2017.04.016
You do not currently have access to this content.