Abstract

Porous media and nanofluid utilization are two passive heat transfer improvement tools, which have been employed extensively in recent years. Porous media with gradient properties result in both a higher effective thermal conductivity and better local convective heat transfer because of conducting the flow to the desired regions. In this study, distinct porous ribs are located on the internal border of an annulus. Four different conditions are considered for permeability change of ribs, including the minimum and maximum Darcy numbers and linearly increasing or decreasing variation in the radial direction, called LIV and LVD, respectively. In the first step, effects of porous rib relative height, porous rib porosity, and flow Reynolds number on the thermal efficiency and pressure drop are investigated. The results show that the configuration with Da = LVD and W/Rh = 0.25 has the maximum performance number PN = 2, that is the Nusselt improvement over pressure drop increment. Porous ribs arrangement with W/Rh = 0.25 and the minimum porosity (ɛ = 0.9) give the best PN. In the next step, the effects of nanoparticle addition with different volume fractions to the base fluid in different Reynolds numbers are investigated. In this step, porous rib relative height is set to W/Rh = 0.25. The results show that the maximum volume fraction has the highest heat transfer enhancement (about 2–2.5 times) but the lower volume fractions have higher PNs (PN ≈ 2.5 at ϕ = 1% and Re = 500).

References

1.
Siavashi
,
M.
,
Talesh Bahrami
,
H. R.
, and
Saffari
,
H.
,
2017
, “
Numerical Investigation of Porous rib Arrangement on Heat Transfer and Entropy Generation of Nanofluid Flow in an Annulus Using a two-Phase Mixture Model
,”
Numer. Heat Transfer Part A: Appl.
,
71
(
12
), pp.
1251
1273
. 10.1080/10407782.2017.1345270
2.
Siavashi
,
M.
,
Talesh Bahrami
,
H. R.
, and
Aminian
,
E.
,
2018
, “
Optimization of Heat Transfer Enhancement and Pumping Power of a Heat Exchanger Tube Using Nanofluid With Gradient and Multi-Layered Porous Foams
,”
Appl. Therm. Eng.
,
138
, pp.
465
474
. 10.1016/j.applthermaleng.2018.04.066
3.
Sheikholeslami
,
M.
,
Rashidi
,
M. M.
, and
Ganji
,
D. D.
,
2015
, “
Numerical Investigation of Magnetic Nanofluid Forced Convective Heat Transfer in Existence of Variable Magnetic Field Using two Phase Model
,”
J. Mol. Liq.
,
212
, pp.
117
126
. 10.1016/j.molliq.2015.07.077
4.
Tandiroglu
,
A.
,
2006
, “
Effect of Flow Geometry Parameters on Transient Heat Transfer for Turbulent Flow in a Circular Tube with Baffle Inserts
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1559
1567
. 10.1016/j.ijheatmasstransfer.2006.01.018
5.
Ahmed
,
M. A.
,
Shuaib
,
N. H.
, and
Yusoff
,
M. Z.
,
2012
, “
Numerical Investigations on the Heat Transfer Enhancement in a Wavy Channel Using Nanofluid
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5891
5898
. 10.1016/j.ijheatmasstransfer.2012.05.086
6.
Siavashi
,
M.
,
Bahrami
,
H. R. T.
,
Aminian
,
E.
, and
Saffari
,
H.
,
2019
, “
Numerical Analysis on Forced Convection Enhancement in an Annulus Using Porous Ribs and Nanoparticle Addition to Base Fluid
,”
J. Cent. South Univ.
,
26
(
5
), pp.
1089
1098
. 10.1007/s11771-019-4073-z
7.
Shirvan
,
K.M.
,
Ellahi
,
R.
,
Mirzakhanlari
,
S.
, and
Mamourian
,
M.
,
2016
, “
Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow
,”
Appl. Therm. Eng.
,
109
, pp.
761
774
. 10.1016/j.applthermaleng.2016.08.116
8.
Arasteh
,
H.
,
Mashayekhi
,
R.
,
Ghaneifar
,
M.
,
Toghraie
,
D.
, and
Afrand
,
M.
,
2019
, “
Heat Transfer Enhancement in a Counter-Flow Sinusoidal Parallel-Plate Heat Exchanger Partially Filled with Porous Media Using Metal Foam in the Channels’ Divergent Sections
,”
J. Therm. Anal. Calorim.
, pp.
1
17
. 10.1007/s10973-019-08870-w
9.
Zhao
,
Z.
,
2020
, “
Numerical Modeling and Simulation of Heat Transfer and Fluid Flow in a two-Dimensional Sudden Expansion Model Using Porous Insert Behind That
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09505-1
10.
Talesh Bahrami
,
H. R.
, and
Safikhani
,
H.
,
2020
, “
Heat Transfer Enhancement Inside an Eccentric Cylinder with an Inner Rotating Wall Using Porous Media: a Numerical Study
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-09532-y
11.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2020
, “
Development of a Numerical Model for Single- and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042901
. https://doi.org/10.1115/1.4044574
12.
Marpu
,
D. R.
, and
Satyamurty
,
V. V.
,
1989
, “
Influence of Variable Fluid Density on Free Convection in Rectangular Porous Media
,”
ASME J. Energy Resour. Technol.
,
111
(
4
), pp.
214
220
. 10.1115/1.3231427
13.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
. 10.1115/1.4039775
14.
Aminian
,
E.
,
Moghadasi
,
H.
, and
Saffari
,
H.
,
2020
, “
Magnetic Field Effects on Forced Convection Flow of a Hybrid Nanofluid in a Cylinder Filled with Porous Media: a Numerical Study
,”
J. Therm. Anal. Calorim.
, pp.
1
13
.
15.
Ting
,
T.W.
,
Mun Hung
,
Y.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
. 10.1115/1.4032792
16.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
. 10.1115/1.4041929
17.
Wang
,
B.
,
Hong
,
Y.
,
Hou
,
X.
,
Xu
,
Z.
,
Wang
,
P.
,
Fang
,
X.
, and
Ruan
,
X.
,
2015
, “
Numerical Configuration Design and Investigation of Heat Transfer Enhancement in Pipes Filled with Gradient Porous Materials
,”
Energy Convers. Manage.
,
105
, pp.
206
215
. 10.1016/j.enconman.2015.07.064
18.
Wang
,
B.
,
Hong
,
Y.
,
Wang
,
L.
,
Fang
,
X.
,
Wang
,
P.
, and
Xu
,
Z.
,
2015
, “
Development and Numerical Investigation of Novel Gradient-Porous Heat Sinks
,”
Energy Convers. Manage.
,
106
, pp.
1370
1378
. 10.1016/j.enconman.2015.10.071
19.
Wang
,
B.
,
Wang
,
L.
,
Wu
,
J.
,
Hong
,
Y.
,
Yan
,
X.
,
Gong
,
H.
, and
Xu
,
Z.
,
2017
, “
Design and Characterization of Isothermal Chambers Filled with Gradient-Porous Materials
,”
J. Therm. Sci. Technol.
,
12
(
1
), p.
JTST0008
. 10.1299/jtst.2017jtst0008
20.
Luo
,
Y.
,
Liu
,
W.
, and
Gou
,
J.
, “
Multiscale Simulation of a Novel Leaf-Vein-Inspired Gradient Porous Wick Structure
,”
J. Bionic Eng.
,
16
(
5
), pp.
828
841
. 10.1007/s42235-019-0100-x
21.
Siavashi
,
M.
,
Talesh Bahrami
,
H. R.
, and
Saffari
,
H.
,
2015
, “
Numerical Investigation of Flow Characteristics, Heat Transfer and Entropy Generation of Nanofluid Flow Inside an Annular Pipe Partially or Completely Filled with Porous Media Using two-Phase Mixture Model
,”
Energy
,
93
, pp.
2451
2466
. 10.1016/j.energy.2015.10.100
22.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
,
26
(
6
), pp.
855
864
. 10.1016/j.ijheatfluidflow.2005.10.005
23.
Bianco
,
V.
,
Chiacchio
,
F.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Numerical Investigation of Nanofluids Forced Convection in Circular Tubes
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3632
3642
. 10.1016/j.applthermaleng.2009.06.019
24.
Akbari
,
M.
,
Behzadmehr
,
A.
, and
Shahraki
,
F.
,
2008
, “
Fully Developed Mixed Convection in Horizontal and Inclined Tubes with Uniform Heat Flux Using Nanofluid
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
545
556
. 10.1016/j.ijheatfluidflow.2007.11.006
25.
Ho
,
C.-J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
,
2010
, “
Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: an Experimental Study
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1345
1353
. 10.1016/j.ijthermalsci.2010.02.013
26.
Mirmasoumi
,
S.
, and
Behzadmehr
,
A.
,
2008
, “
Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using two-Phase Mixture Model
,”
Appl. Therm. Eng.
,
28
(
7
), pp.
717
727
. 10.1016/j.applthermaleng.2007.06.019
27.
Xuan
,
Y.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
. 10.1016/S0142-727X(99)00067-3
28.
Amani
,
M.
,
Amani
,
P.
,
Kasaeian
,
A.
,
Mahian
,
O.
, and
Yan
,
W.-M.
,
2017
, “
Two-phase Mixture Model for Nanofluid Turbulent Flow and Heat Transfer: Effect of Heterogeneous Distribution of Nanoparticles
,”
Chem. Eng. Sci.
,
167
, pp.
135
144
. 10.1016/j.ces.2017.03.065
29.
Maerefat
,
M.
,
Mahmoudi
,
S. Y.
, and
Mazaheri
,
K.
,
2011
, “
Numerical Simulation of Forced Convection Enhancement in a Pipe by Porous Inserts
,”
Heat Transfer Eng.
,
32
(
1
), pp.
45
56
. 10.1080/01457631003732854
30.
Göktepe
,
S.
,
Atalık
,
K.
, and
Ertürk
,
H.
,
2014
, “
Comparison of Single and Two-Phase Models for Nanofluid Convection at the Entrance of a Uniformly Heated Tube
,”
Int. J. Therm. Sci.
,
80
, pp.
83
92
. 10.1016/j.ijthermalsci.2014.01.014
31.
Abu-Nada
,
E.
,
2008
, “
Application of Nanofluids for Heat Transfer Enhancement of Separated Flows Encountered in a Backward Facing Step
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
242
249
. 10.1016/j.ijheatfluidflow.2007.07.001
32.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
. 10.1016/S0017-9310(99)00369-5
33.
Kunugi
,
T.
,
Muko
,
K.
, and
Muko
,
S.
,
2005
, Heat Transfer Method and Heat Exchange System Between Solid and Fluid. Google Patents.
34.
Maïga
,
S. E. B.
,
Palm
,
S. J.
,
Nguyen
,
C. T.
,
Roy
,
G.
, and
Galanis
,
N.
,
2005
, “
Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
530
546
. 10.1016/j.ijheatfluidflow.2005.02.004
You do not currently have access to this content.