Abstract

The Wiebe function is a simple and cost-effective analytical approach to approximate the burn rates in internal combustion (IC) engines. Previous studies indicated that a double-Wiebe function model can better describe the two-stage combustion process inside diesel engines retrofitted to natural gas (NG) spark ignition (SI) compared with a single-Wiebe function. Specifically, the two Wiebe functions are associated with the bowl burn and the squish burn. However, the long tail in the energy release at the end of combustion produces some differences between experiment and model, which can be attributed to the complexity of the late oxidation process inside the post-flame zone and the incomplete combustion of the unburned mixture flowing out from engine crevices. To improve the matching between the model and experimental data, this paper investigated the effect of adding a third Wiebe function just to describe the long tail in the energy release at the end of combustion. The results indicated that such a methodology greatly improved the fitting accuracy in terms of phasing and magnitude of the heat release rate in each combustion stage.

References

1.
Narayanan
,
G.
, and
Shrestha
,
S. O.
,
2009
, “
A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032203
. 10.1115/1.3185344
2.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G. T.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
. 10.1115/1.4024027
3.
Ghojel
,
J. I.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engine Res.
,
11
(
4
), pp.
297
312
. 10.1243/14680874JER06510
4.
Wiebe
,
I.
,
1962
,
Progress in Engine Cycle Analysis: Combustion Rate and Cycle Processes
,
Ural-Siberia Branch
,
Mashgiz
, pp.
200
271
.
5.
Heywood
,
J. B.
,
Higgins
,
J. M.
,
Watts
,
P. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions
,”
SAE Technical Paper 790291
.
6.
Woschni
,
G.
, and
Anisits
,
F.
,
1974
, “
Experimental Investigation and Mathematical Presentation of Rate of Heat Release in Diesel Engines Dependent Upon Engine Operating Conditions
,”
SAE Technical Paper 740086
.
7.
GT-POWER Engine Simulation Software
,
2020
,
GT-SUITE, Gamma Technologies Inc.
,
Westmont, IL
.
8.
Ghojel
,
J. I.
,
1982
, “
A Study of Combustion Chamber Arrangements and Heat Release in DI Diesel Engines
,”
SAE Technical Paper 821034
.
9.
Watson
,
N.
,
Pilley
,
A. D.
, and
Marzouk
,
M.
,
1980
, “
A Combustion Correlation for Diesel Engine Simulation
,”
SAE Technical Paper 800029
.
10.
Miyamoto
,
N.
,
Chikahisa
,
T.
,
Murayama
,
T.
, and
Sawyer
,
R.
,
1985
, “
Description and Analysis of Diesel Engine Rate of Combustion and Performance Using Wiebe’s Functions
,”
SAE Technical Paper 850107
.
11.
Liu
,
Z.
, and
Karim
,
G. A.
,
1997
, “
Simulation of Combustion Processes in Gas-Fuelled Diesel Engines
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
211
(
2
), pp.
159
169
. 10.1243/0957650971537079
12.
Pirouzpanah
,
V.
,
Saray
,
R. K.
,
Sohrabi
,
A.
, and
Niaei
,
A.
,
2007
, “
Comparison of Thermal and Radical Effects of EGR Gases on Combustion Process in Dual Fuel Engines at Part Loads
,”
Energy Convers. Manage.
,
48
(
7
), pp.
1909
1918
. 10.1016/j.enconman.2007.01.031
13.
Yasar
,
H.
,
Soyhan
,
H. S.
,
Walmsley
,
H.
,
Head
,
B.
, and
Sorusbay
,
C.
,
2008
, “
Double-Wiebe Function: An Approach for Single-Zone HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1284
1290
. 10.1016/j.applthermaleng.2007.10.014
14.
Glewen
,
W. J.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Daw
,
C. S.
,
2009
, “
Analysis of Cyclic Variability in Spark-Assisted HCCI Combustion Using a Double Wiebe Function
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2885
2892
. 10.1016/j.proci.2008.06.029
15.
Tolou
,
S.
,
Vedula
,
R. T.
,
Schock
,
H.
,
Zhu
,
G.
,
Sun
,
Y.
, and
Kotrba
,
A.
,
2018
, “
Combustion Model for a Homogeneous Turbocharged Gasoline Direct-Injection Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102804
. 10.1115/1.4039813
16.
Bilcan
,
A.
,
Tazerout
,
M.
,
Le Corre
,
O.
, and
Ramesh
,
A.
,
2001
, “
Ignition Delay in Dual Fuel Engines: An Extended Correlation for Gaseous Fuels
,”
Proceedings of ASME ICED Spring 2001
,
Philadelphia, PA
,
Apr. 29–May 2
, pp.
49
56
.
17.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
(
1
), pp.
73
83
. 10.1016/j.enconman.2018.12.118
18.
Liu
,
J.
,
Bommisetty
,
H. K.
, and
Dumitrescu
,
C. E.
,
2019
, “
Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112207
. 10.1115/1.4043749
19.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
. 10.1115/1.4043709
20.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
(
1
), pp.
95
103
. 10.1016/j.apenergy.2019.04.098
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
22.
Xu
,
S.
,
Anderson
,
D.
,
Singh
,
A.
,
Hoffman
,
M.
,
Prucka
,
R.
, and
Filipi
,
Z.
,
2014
, “
Development of a Phenomenological Dual-Fuel Natural Gas Diesel Engine Simulation and its Use for Analysis of Transient Operations
,”
SAE Int. J. Engines
,
7
(
4
), pp.
1665
1673
. 10.4271/2014-01-2546
23.
Xu
,
S.
,
Anderson
,
D.
,
Hoffman
,
M.
,
Prucka
,
R.
, and
Filipi
,
Z.
,
2017
, “
A Phenomenological Combustion Analysis of a Dual-Fuel Natural-Gas Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
231
(
1
), pp.
66
83
. 10.1177/0954407016633337
24.
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Bommisetty
,
H. K.
, and
Ulishney
,
C.
,
2019
, “
Conversion of a Heavy-Duty Diesel Engine to Natural-Gas Spark-Ignition Operation: Test Bench Development
,”
Proceedings of ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 8–14
, Paper IMECE2019-10728.
25.
Gasbarro
,
L.
,
Liu
,
J.
,
Ulishney
,
C.
,
Dumitrescu
,
C. E.
,
Ambrogi
,
L.
, and
Battistoni
,
M.
,
2019
, “
Development of the Control and Acquisition System for a Natural-gas Spark-Ignition Engine Test Bench
,”
Proceedings of ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 8–14
, Paper IMECE2019-11485.
26.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2213
2220
. 10.1016/j.applthermaleng.2011.01.040
27.
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D.
, and
Naber
,
J.
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. KONES Powertrain Transp.
,
15
(
3
), pp.
567
574
.
28.
Elgin
,
R. C.
,
Turner
,
C. W.
, and
Hagen
,
C. L.
,
2013
, “
Combustion Chamber Design Considerations for a Compression Ignition Engine to Spark Ignited Natural Gas Engine Conversion
,”
Western States Section of the Combustion Institute—Fall Technical Meeting
,
Fort Collins, CO
,
Oct. 7–8
, Paper 13F-41.
29.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion Inside a Diesel Geometry
,”
Energy Convers. Manage.
,
195
(
1
), pp.
21
31
. 10.1016/j.enconman.2019.04.091
30.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Improved Thermodynamic Model for Lean Natural Gas Spark Ignition in a Diesel Engine Using a Triple Wiebe Function
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
062303
. 10.1115/1.4045534
31.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Investigation of Multistage Combustion Inside a Heavy-Duty Natural-Gas Spark-Ignition Engine Using 3D CFD Simulations and the Wiebe-Function Combustion Model
,”
ASME J. Eng. Gas Turbines Power
, (accepted for publication). http://dx.doi.org/10.1115/1.4045869
You do not currently have access to this content.